logo

A circuit motif in the zebrafish hindbrain for a two alternative behavioral choice to turn left or right

M. Koyama, F. Minale, J. Shum, N. Nishimura, C. B. Schaffer, and J. R. Fetcho

eLife (2016)

 View Abstract

Animals collect sensory information from the world and make adaptive choices about how to respond to it. Here, we reveal a network motif in the brain for one of the most fundamental behavioral choices made by bilaterally symmetric animals: whether to respond to a sensory stimulus by moving to the left or to the right. We define network connectivity in the hindbrain important for the lateralized escape behavior of zebrafish and then test the role of neurons by using laser ablations and behavioral studies. Key inhibitory neurons in the circuit lie in a column of morphologically similar cells that is one of a series of such columns that form a developmental and functional ground plan for building hindbrain networks. Repetition within the columns of the network motif we defined may therefore lie at the foundation of other lateralized behavioral choices.

 Full Access

Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers

G. D. Calvey, A. M. Katz, C. B. Schaffer, and L. Pollack,

Structural dynamics (2016)

 View Abstract

Knowledge of protein structure provides essential insight into function, enhancing our understanding of diseases and enabling new treatment development. X-ray crystallography has been used to solve the structures of more than 100 000 proteins; however, the vast majority represent long-lived states that do not capture the functional motions of these molecular machines. Reactions triggered by the addition of a ligand can be the most challenging to detect with crystallography because of the difficulty of synchronizing reactions to create detectable quantities of transient states. The development of X-ray free electron lasers (XFELs) and serial femtosecond crystallography (SFX) enables new approaches for solving protein structures following the rapid diffusion of ligands into micron sized protein crystals. Conformational changes occurring on millisecond timescales can be detected and time-resolved. Here, we describe a new XFEL injector which incorporates a microfluidic mixer to rapidly combine reactant and sample milliseconds before the sample reaches the X-ray beam. The mixing injector consists of bonded, concentric glass capillaries. The fabrication process, employing custom laser cut centering spacers and UV curable epoxy, ensures precise alignment of capillaries for repeatable, centered sample flow and dependable mixing. Crystal delivery capillaries are 50 or 75 μm in diameter and can contain an integrated filter depending on the demands of the experiment. Reaction times can be varied from submillisecond to several hundred milliseconds. The injector features rapid and uniform mixing, low sample dilution, and high hit rates. It is fully compatible with existing SFX beamlines.

 Full Access

Simultaneous Optical and Electrical In Vivo Analysis of the Enteric Nervous System

Rakhilin N, Barth B, Choi J, Munoz N, Kulkarni S, LaVinka C, Dong X, Spencer M, Pasricha P, Nishimura N, Jones J, Small D, Cheng YT, Cao Y, Kan E, Shen X

Nat Commun (2016)

 View Abstract

The enteric nervous system (ENS) is a major division of the nervous system and vital to the gastrointestinal (GI) tract and its communication with the rest of the body. Unlike the brain and spinal cord, relatively little is known about the ENS in part because of the inability to directly monitor its activity in live animals. Here, we integrate a transparent graphene sensor with a customized abdominal window for simultaneous optical and electrical recording of the ENS in vivo. The implanted device captures ENS responses to neurotransmitters, drugs and optogenetic manipulation in real time.

 Full Access

The origin and implementation of the Broadening Experiences in Scientific Training programs: an NIH common fund initiative

F. J. Meyers, A. Mathur, C. N. Fuhrmann, T. C. O’Brien, I. Wefes, P. A. Labosky, D. S. Duncan, A. August, A. Feig, K. L. Gould, M. J. Friedlaner, C. B. Schaffer, A. Van Wart, R. Chalkley

FASEB Journal (2016)

 View Abstract

Recent national reports and commentaries on the current status and needs of the U.S. biomedical research workforce have highlighted the limited career development opportunities for predoctoral and postdoctoral trainees in academia, yet little attention is paid to preparation for career pathways outside of the traditional faculty path. Recognizing this issue, in 2013, the U.S. National Institutes of Health (NIH) Common Fund issued a request for application titled "NIH Director's Biomedical Research Workforce Innovation Award: Broadening Experiences in Scientific Training (BEST)." These 5-yr 1-time grants, awarded to 17 single or partnering institutions, were designed to develop sustainable approaches to broaden graduate and postgraduate training, aimed at creating training programs that reflect the range of career options that trainees may ultimately pursue. These institutions have formed a consortium in order to work together to develop, evaluate, share, and disseminate best practices and challenges. This is a first report on the early experiences of the consortium and the scope of participating BEST programs. In this report, we describe the state of the U.S. biomedical workforce and development of the BEST award, variations of programmatic approaches to assist with program design without BEST funding, and novel approaches to engage faculty in career development programs. To test the effectiveness of these BEST programs, external evaluators will assess their outcomes not only over the 5 yr grant period but also for an additional 10 yr beyond award completion.

 Full Access

TRAIL-coated leukocytes that prevent the bloodborne metastasis of prostate cancer,”

W.C. Wayne, S. Chandrasekaran, M. J. Mitchell, M. F. Chan, R. E. Lee, C. B. Schaffer, M. R. King

Journal of Controlled Release (2016)

 View Abstract

Prostate cancer, once it has progressed from its local to metastatic form, is a disease with poor prognosis and limited treatment options. Here we demonstrate an approach using nanoscale liposomes conjugated with E-selectin adhesion protein and Apo2L/TRAIL (TNF-related apoptosis-inducing ligand) apoptosis ligand that attach to the surface of leukocytes and rapidly clear viable cancer cells from circulating blood in the living mouse. For the first time, it is shown that such an approach can be used to prevent the spontaneous formation and growth of metastatic tumors in an orthotopic xenograft model of prostate cancer, by greatly reducing the number of circulating tumor cells. We conclude that the use of circulating leukocytes as a carrier for the anti-cancer protein TRAIL could be an effective tool to directly target circulating tumor cells for the prevention of prostate cancer metastasis, and potentially other cancers that spread through the bloodstream.

 Full Access

Sort by Archive Year

Sort by Principal Investigators