Programmable shaping of ultrabroad-bandwidth pulses from a Ti:sapphire laser

Anatoly Efimov, Chris Schaffer, David H. Reitze

Journal of the Optical Society of America (1995)

 View Abstract

We have used a commercially available liquid-crystal spatial light modulator within a reflective optics pulse-shaping apparatus to shape ultrashort pulses with temporal resolution approaching 10 fs. Using the spatial light modulator as a phase modulator, we produce a variety of complex ultrafast waveforms, including odd pulses, high repetition rate (.23 THz) pulse trains, and asymmetric pulse trains. We also show that it is possible to compensate for large amounts of high-order phase dispersion (in excess of 60p) by appropriate cubic- and quartic-phase modulations of the pulse. Finally, we examine the limitations of shaping ultrabroad-bandwidth pulses. We find that, for specific classes of waveforms, Fourier-transform pulse-shaping techniques can be used for pulses with 5-fs durations, which exceed the current state of the art in ultrashort pulse generation. However, synthesis of general waveforms with 5-fs resolution will require compensating for nonlinear spatial dispersion of frequency in the masking plane.

 Full Access

Sort by Archive Year

Sort by Principal Investigators