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Abstract: We present a compact and portable three-photon gradient index 
(GRIN) lens endoscope system suitable for imaging of unstained tissues, 
potentially deep within the body, using a GRIN lens system of 1 mm 
diameter and 8 cm length. The lateral and axial resolution in water is 1.0 μm 
and 9.5 μm, respectively. The ~200 μm diameter field of view is imaged at 
2 frames/s using a fiber-based excitation source at 1040 nm. Ex vivo 
imaging is demonstrated with unstained mouse lung at 5.9 mW average 
power. These results demonstrate the feasibility of three-photon GRIN lens 
endoscopy for optical biopsy. 
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1. Introduction 

In vivo two-photon (2P) microscopy has become a valuable tool for the study of subsurface 
features in intact tissues and organs [1]. To be clinically useful, endoscopic 2P approaches are 
required. A number of different endoscopes and techniques have been demonstrated in the 
past [2–9], including in vivo imaging of unstained tissues [10,11]. 

Previous 2P endoscope demonstrations rely on the mode-locked Ti:S laser at 800 nm to 
excite intrinsic fluorescence. However, longer excitation wavelengths have been shown to 
provide several advantages. As a result of an increased scattering length in tissue for longer 
excitation sources, the imaging penetration depth can be increased significantly using longer 
excitation wavelengths [12,13]. There are also strong indications that using longer 
wavelengths could lead to diminished phototoxicity. For example, imaging with longer 
wavelength has been shown to reduce destructive plasma formation [14,15]. Furthermore, 
femtosecond pulsed excitation at 1030 to 1070 nm can be conveniently provided by robust, 
compact fiber based lasers, which will significantly reduce the cost and improve the clinical 
compatibility. Although fiber lasers at these wavelengths can be used for 2P imaging of red 
dyes [16], 2P excitation of intrinsic molecules such as nicotinamide adenine dinucleotide 
(NADH) and flavin adenine dinucleotide (FAD) is impractical using the fiber source due to 
their small 2P cross sections at the long wavelengths [17]. 

Three-photon (3P) microscopy was first demonstrated in the 1990s [17–19]. 3P excitation 
is an effective approach to extend the spectral range of the excitation source. For example, 3P 
intrinsic fluorescence microscopy has been performed with deep UV-excitable intrinsic 
fluorophores such as serotonin and melatonin [20,21]. Here we demonstrate a GRIN lens 
endoscope that is capable of imaging unstained mouse lung tissues using 3P excitation by a 
fiber laser at 1040 nm. To the best of our knowledge, this is the first demonstration of 3P 
imaging of unstained tissues through a compact and portable system with potential for 
endoscopic tissue diagnosis. 
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2. Endoscope design and characterization 

The compact and portable GRIN lens endoscope is shown in Fig. 1, which was described in 
our previous work for 2P excitation of intrinsic fluorescence using a mode-locked Ti:S laser at 
800 nm [11]. This system weighs less than 2lbs and was used successfully for in vivo 2P 
imaging in rats. For 3P endoscopic imaging, we used a longer wavelength, fiber laser source. 
(IMRA µJewel laser, 1040 nm wavelength and 1 MHz repetition rate). The optical 
components such as scan mirrors, scan lenses, objective and GRIN lens system are compatible 
with this new excitation source. For example, we found that the transmission of the GRIN lens 
is ~80% at 1040 nm, which is adequate for our applications. Modifications were made in the 
pulse delivery. The excitation light is delivered to the endoscope via a 1.6 m long hollow-core 
photonic band-gap fiber (HC-1060-2, NKT Photonics). A half-wave plate (WPH05M-1053, 
Thorlabs Inc.) was used to align the polarization of the excitation light with the polarization 
axis of the fiber. An aspheric lens on the portable GRIN lens endoscope collimates the 
excitation light to a beam about 2 mm in diameter. A small aperture (3 mm), galvanometer 
scanning mirror system (6210H, Cambridge Technology) allows for a fast imaging rate (up to 
4 frames/s at 512 by 512 pixels). The beam is then expanded by two scan lenses 18 and 36 
mm in focal length (respectively, LSM02-BB and LSM03-BB, Thorlabs Inc.) to underfill a 
0.3 NA microscope objective (RMS10X-PF, Thorlabs Inc.) to achieve an effective focusing 
NA of ~0.1. A polarizer was added between the scan lenses to eliminate any residual light in 
the orthogonal polarization. The microscope objective couples the excitation beam into the 
proximal side of the GRIN lens system. This 1 mm diameter system is composed of a 0.1 NA 
relay lens (1.75 pitch) and a 0.5 NA objective lens (<0.25 pitch), resulting in a total probe 
length of 8 cm. The fluorescence signal from the sample is epi-collected through the GRIN 
lenses and the microscope objective, and is reflected by a dichroic beam splitter (FF705-Di01, 
Semrock Inc.). After passing through one short pass filter (FF01-720/SP, Semrock Inc.), a 
notch dichroic (NFD01-532, Semrock Inc.) separates the signal into the second harmonic 
generation (SHG) and the autofluorescence channel. Another 520 nm bandpass filter (FF01-
520/15, Semrock Inc.) is used to further minimize autofluorescence collection in the SHG 
channel. The housing of the GRIN lens endoscope is constructed from custom machined 
aluminum components using a milling machine with a fabrication tolerance of 0.001”. Optical 
characterizations were conducted by moving the sample mounted on a 3D stage (MP-285, 
Sutter Instruments), allowing axial scanning of the sample while maintaining the GRIN lens 
endoscope system in a fixed position. 

 

Fig. 1. Portable GRIN lens endoscope. (a) Optical setup and (b) Photograph of the GRIN lens 
based endoscope system. Total system length of the portable device is 10.6” (including GRIN 
lens system). 
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To compensate for the fiber’s anomalous dispersion, the pulses were pre-chirped by using 
a long piece of SF11 glass (Schott). Second order interferometric autocorrelations were 
performed to optimize the dispersion compensation by measuring the pulse-width at the 
sample for different lengths of SF11 glass before the fiber. We found that 65 cm of SF11 glass 
produced the shortest pulse with an intensity autocorrelation full-width at half-maximum 
(FWHM) of 509 fs. The resulting autocorrelation traces are shown in Fig. 2. 

 

Fig. 2. Second order interferometric autocorrelation traces of the pulse. (a) Directly from the 
source, inset: the corresponding intensity autocorrelation with a pulse width of 524 fs, (b) at the 
sample (i.e., after dispersion compensation using 65 cm of SF11 glass, the hollow core fiber, 
the optical components, and the GRIN lens), inset: the corresponding intensity autocorrelation 
with a pulse width of 509 fs. 

We imaged fluorescent beads (0.1 μm diameter, absorption peak 350 nm, emission peak 
440 nm, Invitrogen) embedded in agarose gel and with water immersion to characterize the 
lateral and axial 3P resolution. The FWHM for the lateral and axial resolution is 1.0 μm and 
9.5 μm, respectively (Fig. 3). To confirm 3P excitation, fluorescence signal was measured at 5 
different excitation powers while the laser beam was fixed on a bead. Figure 3(c) shows that 
the fluorescence signal generated closely follows a cubic dependence on the excitation power. 
To demonstrate the capability of our device for imaging intrinsic fluorescence, we imaged 
unstained mouse lung tissue ex vivo. A 3 month old female, wild type mouse (Jackson Labs) 
was euthanized and a lung lobe was removed, embedded in agarose gel and plated on a 
standard glass microscope slide. The tissue was imaged within 1 hour of euthanasia using 5.9 
mW at the sample and at a frame rate of 2 frames/s (512 by 512 pixels). Representative 
images are shown in Figs. 4(a)-4(c). We can identify the surface of the lung with strong SHG 
signal coming presumably from the pleura (Fig. 4(a)). Below that, we can identify individual 
circular alveoli Figs. 4(b)-4(c), showing that the images could potentially provide diagnostic 
information. To confirm 3P excitation, fluorescence photons of the autofluorescence channel 
were measured at 5 different excitation powers at the sample by photon counting while 
scanning the laser beam at a fixed area in the tissue. Figure 4(d) shows that the fluorescence 
signal generated from the unstained tissue closely follows a cubic dependence on the 
excitation power, confirming that the image contrast is indeed generated by 3P excitation of 
intrinsic fluorescence. 
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Fig. 3. Three-photon lateral and axial resolution of the GRIN lens endoscope system. (a) 
Lateral and (b) axial intensity line profile across a subresolution fluorescent bead (blue 
diamonds). The Gaussian fits are indicated by the red lines. (c) Log-log plot of fluorescence 
signal as a function of excitation power at the sample. The slope is 2.9, indicating that the 
signal is generated by 3P excitation. Data in (c) was acquired using an ultrafast fiber laser at 
1030 nm (Satsuma, Amplitude Systems, 5.7 MHz repetition rate). 

 

Fig. 4. Unaveraged image of ex vivo unstained mouse lung acquired at 2 frames/s. Green: 3P 
autofluorescence. Red: SHG. Scale bar is 20 μm. Images taken at (a) 20 μm, (b) 30 μm, and (c) 
40 μm below the tissue surface. (d) Log-log plot of autofluorescence signal as a function of 
excitation power at the sample. The slope is 2.9, indicating that the signal is generated by 3P 
excitation. 
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3. Discussion 

Our results demonstrated the feasibility of 3P imaging of intrinsic fluorescence in a GRIN 
lens endoscope. As compared to our previous 2P imaging results at 800 nm using the same 
device [11], the resolution of 3P imaging at 1040 nm degrades slightly, 1.0 μm lateral and 9.5 
μm axial for 3P imaging vs. 0.85 μm lateral and 7.4 μm axial for 2P imaging. Since the GRIN 
lens system was originally designed for 800 nm excitation, the imaging performance at 1040 
nm may be somewhat degraded. Nonetheless, our results showed that the spatial resolution is 
sufficient to provide diagnostic information. 

There are several advantages for 3P endoscopy as compared to 2P endoscopy. The longer 
excitation wavelength and 3P excitation significantly improve the capability of tissue 
penetration [22], which is desirable for tissue diagnostics. 3P excitation allows the use of 
compact, convenient fiber femtosecond laser as the excitation source, which significantly 
reduces the cost and improves the clinical compatibility. Furthermore, the fiber laser at 1040 
nm can excite intrinsic molecules (e.g., NADH, FAD) significantly closer to their 3P 
excitation peaks than 2P excitation at 800 nm [20]. While the pulse energy has increased in 
our demonstration as compared to our 2P endoscope, we found that the required average 
power for image generation is less than 6 mW, bringing multiphoton endoscopy to average 
power levels comparable to other optical diagnostic techniques such as confocal endoscopy 
and optical coherence tomography [23]. While the exact impact of pulse energy, duration, 
wavelength and average power on tissue damage needs to be investigated further, previous 
studies showed a lower phototoxicity at longer wavelengths [14,15,24]. We note that third 
harmonic generation (THG), which is much more ubiquitous than SHG, could potentially be 
added as another imaging contrast. Although THG imaging is not possible in our experiments 
because the transmission of the GRIN lens we used drops significantly below 370 nm, there is 
no fundamental limitation in making new lenses with high transmission at ~350 nm. 

The main disadvantage of 3P endoscopy would be an increase in chromatic aberrations in 
the endoscope optics due to the larger difference between the excitation and signal 
wavelengths. The impact of this, however, can be reduced by carefully designing the optics 
for specific applications. Fiber delivery of the energetic femtosecond pulses for 3P excitation 
is another concern. The use of hollow core fibers, as shown in this paper, overcomes this 
difficulty. While hollow core fibers cannot effectively collect the fluorescence signal back 
through the excitation path, efficient signal collection through non-reciprocal optical path 
(e.g., using large core multimode fibers) has been demonstrated in the past [25,26]. Thus, 3P 
excitation can be implemented in a flexible endoscope with a small rigid tip. 

It should be noted that although we used a fiber laser that is capable of producing average 
power up to 1 W (i.e., 1 μJ pulses), less than 6 mW (i.e., 6 nJ pulses) was used at the sample 
in our experiments. Compact, fiber based femtosecond oscillators producing >40 nJ pulse 
energy are commercially available. These sources are adequate for 3P excitation of intrinsic 
fluorophores assuming a reasonable system throughput of ~25%. Furthermore, our frame rate 
(2 frames per second) was limited by the low repetition rate of the laser (1MHz). Oscillators 
providing higher repetition rates (e.g., 3 MHz) and shorter pulses (e.g., 150 fs) can 
significantly increase the imaging acquisition rate without increasing the average excitation 
power, which will be valuable for overcoming motion artifacts for in vivo applications. 
Alternatively, the pixel clock of the image acquisition system could be synchronized to the 
laser pulses to maximize the frame rate [27], For example, 3 MHz repetition rate can provide 
a maximum frame rate of ~12 frames/s at 512 pixels by 512 pixels per frame, which is 
adequate to overcome motion artifacts in in vivo imaging. Such a frame rate was shown to be 
adequate for in vivo imaging of Fluorescein stained human bladders using a confocal laser 
endoscope [28]. 

4. Conclusion 

We have demonstrated the feasibility of 3P intrinsic fluorescence endoscopy using a GRIN 
lens endoscope and a fiber-based excitation source at 1040 nm. The compact and portable 
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device can acquire 3P intrinsic fluorescence and SHG images at a rate of 2 frames/s with a 
field-of-view of ~200 μm diameter with subcellular resolution. The presented ex vivo results 
of unstained mouse lung tissue show great promise for using 3P GRIN lens endoscopy for 
optical biopsy. The combination of longer wavelength and 3P excitation, together with the 
convenient fiber-based excitation source, may make 3P endoscopy a valuable alternative to 
the conventional 2P approach. 
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