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1. Introduction

Let Z :¼ðZt; tX0Þ be a spectrally negative Lévy process starting from 0 given on
a complete probability space ðO;F; ðFtÞtX0;PÞ where the filtration ðFtÞtX0 satisfies
the usual conditions. For any l40; we define a generalized Ornstein–Uhlenbeck (for
short GOU) process X :¼ ðX t; tX0Þ ; starting from x 2 R; with backward driven
Lévy process (for short BDLP) Z as the unique solution to the following stochastic
differential equation:

dX t ¼ �lX t dt þ dZt; X 0 ¼ x: ð1:1Þ

These are a generalization of the classical Ornstein–Uhlenbeck process constructed
by simply replacing the driving Brownian motion with a Lévy process. In this
paper we are concerned with the positive random variables Ty and the functional I t

defined by

Ty ¼ inffsX0; X s4yg and I t ¼

Z t

0

X s ds; ð1:2Þ

respectively. The Laplace transform of Ty is known from Hadjiev [9]. There is an
important literature regarding the distribution of additive functionals, stopped at
certain random times, of diffusions processes, see for instance the book of Borodin
and Salminen [5] for a collection of explicit results. However, the law of such
functionals for Markov processes with jumps are not known except in some special
cases (e.g. the exponential functional of some Lévy processes, see Carmona et al. [6]
and the Hilbert transform of Lévy processes see Fitzsimmons and Getoor [8] and
Bertoin [2]). The explicit form of the joint distribution ðTy; ITy

Þ; when X is the
classical Ornstein–Uhlenbeck, is given by Lachal [10]. Here, the author exploits the
fact that the bivariate process ðI t;X t; tX0Þ is a Markov process. We shall extend his
result by providing the Laplace transform of this two-dimensional distribution in the
general case, i.e. when X is a GOU process as defined above. We recall that first
passage times problems for Markov processes are closely related to the finding of an
appropriate martingale associated to the process. We shall provide a methodology
which allows us to build up the martingale used to compute the joint Laplace
transform we are looking for. In a second step we shall combine martingales and
Markovian techniques to derive the Laplace–Fourier transform.

GOU processes have found many applications in several fields. They are widely
used in finance today to model the stochastic volatility of a stock price process (see
e.g. Barndorff-Nielsen and Shephard [1]) and for describing the dynamics of the
instantaneous interest rate. The latter application, as a generalization of the Vasicek
model, deserves particular attention, as these processes belong to the class of one
factor affine term structure model. These are well known to be tractable, in the sense
that it is easy to fit the entire yield curve by basically solving Riccati equations, see
Duffie et al. [7] for a survey on affine processes. From the expression of the joint
Laplace transform of ðTy; ITy

Þ; we provide an analytical formula for the price of an
European call option on maximum on yields in the framework of GOU processes.
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The remainder of the paper is organized as follows. In Section 2, we give some
results about Lévy and GOU processes and recall some well-known facts about the
first passage times above a constant level. In Section 3, we give an explicit form for
the joint Laplace transform ðTy; ITy

Þ in terms of new special functions. Section 4 is
devoted to the special case of stable OU processes, that is when Z is a stable process.
In the last section, we apply the previous results to the pricing of path dependent
option on yields with a more detailed study of the stable Vasicek case.
2. Preliminaries and recalls

Throughout the rest of this paper Z :¼ ðZt; tX0Þ denotes a real-valued spectrally
negative Lévy process starting from 0. It is a process with stationary and
independent increments, whose Lévy measure n charges only the negative real line
(nðð0;1ÞÞ ¼ 0). The Lévy measure being the compensator of the jumps measure of
the process, Z has non-positive jumps. Due to the absence of positive jumps, it is
possible to extend analytically the characteristic function of Z to the negative
imaginary line. Thus, one characterizes this process by its so-called Laplace exponent
c : ½0;1Þ ! ð�1;1Þ which is specified by the identity

E½expðuZtÞ
 ¼ expðtcðuÞÞ; t; uX0

and has the form

cðuÞ ¼ bu þ
1

2
s2u2 þ

Z 0

�1

ðeur � 1� urwðrÞÞnðdrÞ; (2.1)

where wðrÞ :¼ Ifr4�1g; b 2 R ; sX0 and nð:Þ is the Lévy measure on ð�1; 0
 which
satisfies the integrability condition

R 0
�1

ð1 ^ x2Þ nðdxÞo1: It is known that c is a
convex function with limu!1 cðuÞ ¼ þ1: We assume that the process X does not
drift to �1; which is the case when c0

ð0þÞ is non-negative, see Bertoin [3, Chapter
VII] for a thorough description of these processes.

We introduce the first passage time process t :¼ ðtz; zX0Þ defined, for a fixed
zX0; by tz ¼ inffsX0; Zs4zg: Denoting by f the inverse function of the continuous
and increasing function c; the Laplace exponent of t is given by, see Bertoin [3,
Theorem VII.1],

E½expð�utzÞ; tzo1
 ¼ expð�zfðuÞÞ: (2.2)

We now review some well-known facts concerning GOU processes. By a variation of
constant technique, the solution of (1.1) can be written in terms of Z as follows:

X t ¼ e�lt x þ

Z t

0

els dZs

� �
; tX0: (2.3)

From this expression, it is easy to derive the Laplace exponent of X

Ex½expðuX tÞ
 ¼ exp e�ltxu þ

Z t

0

cðe�lruÞdr

� �
; uX0;
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where Ex being the expectation with respect to Px; the law of the process starting
from x. From the representation (2.3), we also get that X t�!

R1
0 e�ls dZs a.s. as t

tends to 1: Consequently, the Laplace transform of the limiting distribution of X,
denoted by brX

ðuÞ; uX0; is given by

brX
ðuÞ ¼ exp

Z 1

0

cðe�lruÞdr

� �
; ð2:4Þ

whenever the Lévy measure satisfies the condition
R

ro�1 log jrj nðdrÞo1; see Sato
[16, Chapter III].

The process X is a Feller process. Its infinitesimal generator A is an integro-
differential operator acting on C2

cðRÞ; the space of twice continuously differentiable
functions with compact support. It is defined by

Af ðxÞ ¼ 1
2
s2f 00

ðxÞ þ ðb � lxÞ f 0
ðxÞ þ

Z 0

�1

ðf ðx þ rÞ � f ðxÞ � f 0
ðxÞrwðrÞÞnðdrÞ:

To complete the description, we mention that X is a special semimartingale with
triplet of predictable characteristics given by

bt � l
Z t

0

X s ds;
1

2
s2t; nðdrÞdt

� �
: (2.5)
3. Study of the law of ðTy;
R Ty

0 X s dsÞ

For y4x; we introduce the stopping time Ty ¼ inffsX0; X s4yg: For the
remainder of the paper, we shall impose the following condition.

Assumption 1. Either s40 or
R 0
�1 rnðdrÞ ¼ 1 or b �

R 0
�1 rnðdrÞ4ly:

Our aim in this section is to characterize the joint law of the couple ðTy;
R Ty

0 X s dsÞ

through transform techniques. We shall start with computing the following joint
Laplace transform:

Pðg;yÞ
y ðxÞ :¼ Ex exp �gTy þ y

Z Ty

0

X s ds

� �� �
: (3.1)

To this end, we introduce the GOU process, denoted by X
y
l; with the triplet of

predictable characteristics

b0t � l
Z t

0

X s ds;
s2

2
t; e

y
lrnðdrÞdt

� �
;

where b0 :¼ b þ
y
l
s2 þ

Z �1

�1

ðe
y
lr � 1ÞrnðdrÞ:

Before stating our main result we note two intermediate results.
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Lemma 1. For g; y40 such that Z :¼ g� cðylÞ40; and y4x; we have

Pðg;yÞ
y ðxÞ ¼ e�

y
lðy�xÞ Ex exp �ZT

y
lð Þ

y

� 	h i
; (3.2)

where T
ðylÞ
y ¼ inffsX0; X

y
l
s4yg:

Remark 2. We note that this lemma can easily be extended to compute the joint law
of the couple ðTy;

R Ty

0 LðX sÞdsÞ where X is the solution to the SDE dX t ¼

LðX tÞdt þ dZt; X 0 ¼ xoy; and where LðxÞ is any locally integrable function on R

and Ty ¼ inffsX0; X s4yg such that y is regular for itself.

Proof. Fix y4x: Exploiting the fact that X has non-positive jumps, we getZ Ty

0

X s ds ¼
1

l
ðZTy

þ x � yÞ;

which yields

Pðg;yÞ
y ðxÞ ¼ e�

y
lðy�xÞ Ex exp �gTy þ

y
l

ZTy

� �� �
: &

We recall that Ft ¼ sðZs; sptÞ denotes the natural filtration of Z up to time t. We
now consider the Girsanov’s transform PðxÞ of the probability measure P which is
defined by dP

ðxÞ
jFt

¼ expðxZt � tcðxÞÞdPjFt
; t; xX0: Under PðxÞ; Z, denoted by ZðxÞ; is

again a Lévy process with the following Laplace exponent, for uX0:

cðxÞ
ðuÞ :¼ log E exp uZ

ðxÞ
1

� 	h i� 	
¼ logðE½expððu þ xÞZ1Þ
Þ � cðxÞ

¼ b þ s2xþ
Z �1

�1

ðexr � 1ÞrnðdrÞ

� �
u þ 1

2
s2u2

þ

Z 0

�1

ðeur � 1� urwðrÞÞexrnðdrÞ:

By choosing x ¼ y
l and using the representation (2.5), it is straightforward to deduce

the triplet of predictable characteristics of the associated GOU process X
y
l: We point

out that X
y
l has again non-positive jumps, since the two probability measures are

absolutely continuous. Finally, our relationship follows from the computations:

Pðg;yÞ
y ðxÞ ¼ e�

y
lðy�xÞ Ex exp �gTy þ

y
l

ZTy

� �� �
¼ e�

y
lðy�xÞ Ex exp � g� c

y
l

� �� �
Ty þ

y
l

ZTy
� c

y
l

� �
Ty

� �� �
¼ e�

y
lðy�xÞ Ex exp � g� c

y
l

� �� �
T

y
lð Þ

y

� �� �
:

We now recall the Laplace transform of the random variable Ty see Hadjiev [9] or
Novikov [15].
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Proposition 3. For y4x; and g40; we have

Ex½expð�gTyÞ
 ¼
H g

l
ðxÞ

H g
l
ðyÞ

; (3.3)

where HnðxÞ ¼
R1
0 exp xr � 1

l

R r

1 cðvÞ
dv
v

� 

rn�1 dr:

Remark 4. For a fixed x, the Laplace transform is analytical on the domain
{Z 2 C : RðZÞ40g:

Remark 5. It is at this stage that Assumption 1 is required, see Novikov [15].

See Section 4 for a proof of this result in the case of stable BDLP. We are now
ready to state the following:

Theorem 6. For g; y40 and y4x; we have

Pðg;yÞ
y ðxÞ ¼ e�

y
lðy�xÞ

H g
l;
y
l
ðxÞ

H g
l;
y
l
ðyÞ

; (3.4)

where

Hn;bðxÞ ¼

Z 1

0

exp xr �
1

l

Z r

0

cðv þ bÞ
dv

v

� �
rn�1 dr: (3.5)

Proof. Combining the results of the two previous lemmas and using the obvious
notation, we obtain

Pðg;yÞ
y ðxÞ ¼ e�

y
lðy�xÞ

H
y
lð Þ

Z
l
ðxÞ

H
y
lð Þ

Z
l
ðyÞ

:

Next, since

H
y
lð Þ

Z
l
ðxÞ ¼

Z 1

0

exp xr �
1

l

Z r

1

c
y
lð ÞðvÞ

dv

v

� �
r
Z
l�1 dr

¼

Z 1

0

exp xr �
1

l

Z r

1

c v þ
y
l

� �
dv

v

� �
r
g
l�1 dr

¼ exp
1

l

Z 1

0

c v þ
y
l

� �
dv

v

� �
H g

l;
y
l
ðxÞ;

we obtain the identity H
ðylÞ
Z
l
ðxÞ=H

ðylÞ
Z
l
ðyÞ ¼ H g

l;
y
l
ðxÞ=H g

l;
y
l
ðyÞ: By using the convexity of c

and the fact that limu!1 cðuÞ ¼ þ1; we have for a fixed y40 and a large u; cðu þ

yÞXcðuÞ: Moreover, under the Assumption 1, Novikov [15] shows that
limu!1u�1

R u

0 cðrÞr�1 dr ¼ þ1: Therefore, by following a line of reasoning similar
to Novikov [15, Theorem 2] the proof is completed. &

In Section 4, the special case with stable BDLPs is studied in detail. In what
follows, we provide the Laplace–Fourier transform of the joint distribution. We first
show the following lemma:
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Lemma 7. The bivariate process ðI t;X t; tX0Þ is a Markov process. Its infinitesimal

generator is defined on C2;1
c ðR� RÞ by

Anf ðx; yÞ ¼
1

2
s2

@2f

@x
ðx; yÞ þ ðb � lxÞ

@f

@x
ðx; yÞ þ x

@f

@y
ðx; yÞ

þ

Z 0

�1

f ðx þ r; yÞ � f ðx; yÞ �
@f

@x
ðx; yÞrwðrÞ

� �
nðdrÞ:

Proof. We start by recalling that, although the additive functional I t is not
Markovian, the bivariate process ðI t;X t; tX0Þ is a strong Markov process, see
Blumenthal and Getoor [4]. The second part of the lemma is a consequence of Itô’s
formula. Indeed, for any function f 2 C2;1

c ðR� RÞ; we have

f ðX t; I tÞ ¼ f ðx; 0Þ þ

Z t

0

@f

@x
ðX s�; IsÞdX s þ

1

2

Z t

0

@2f

@x
ðX s; IsÞdhX

cis

þ

Z t

0

@f

@y
ðX s; IsÞdIs þ

X
0ospt

f ðX s; IsÞ � f ðX s�; IsÞ �
@f

@x
ðX s�; IsÞDX s

¼ f ðx; 0Þ � l
Z t

0

@f

@x
ðX s; IsÞX s ds þ

Z t

0

@f

@x
ðX s�; IsÞdZs

þ
1

2

Z t

0

@2f

@x
ðX s; IsÞdhZ

cis þ

Z t

0

@f

@y
ðX s; IsÞX s ds

þ
X

0ospt

f ðX s� þ DZs; IsÞ � f ðX s�; IsÞ �
@f

@x
ðX s�; IsÞDZs;

where X c denotes the continuous martingale part of X. Finally, taking into
consideration that dhZcis ¼ s2 ds; we obtain An: &

Corollary 8. For g; y; l40 and y4x; we have

Pðg;iyÞ
y ðxÞ ¼

H g
l;
iy
l
ðxÞ

H g
l;
iy
l
ðyÞ

; (3.6)

where Hn;bðxÞ ¼ ebxHn;bðxÞ:

Proof. In order to simplify the notation in the proof we assume that s ¼ 0: We
consider the process M :¼ ðMt; tX0Þ defined, for a fixed tX0; by

Mt ¼ exp �gt þ iy
Z t

0

X s ds

� �
H g

l;
iy
l
ðX tÞ: (3.7)

We shall prove that M is a complex martingale. From the integral representation
(3.5), it follows that the function Hn;bðxÞ is analytic in the domain RðnÞ40; RðbÞ

40; x 2 R: Set uðt; x; yÞ :¼ e�gtþiðyyþy
lxÞ; gðxÞ :¼ H g

l;
iy
l
ðxÞ and f ðt; x; yÞ :¼ uðt;x; yÞgðxÞ:

Thanks to the remark following Proposition 3, we see that g is a solution of the
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following integro-differential equation:

A i ylð ÞgðxÞ ¼ g� c i
y
l

� �� �
gðxÞ; (3.8)

with

Axf ðxÞ ¼ ðb̄ � lxÞ f 0
ðxÞ þ

Z 0

�1

ðf ðx þ rÞ � f ðxÞ � f 0
ðxÞrwðrÞÞexrnðdrÞ;

where we recall that b̄ :¼ b þ
R 0
�1

ðexr � 1ÞrwðrÞnðdrÞ: We observe that

@f

@y
ðt;x; yÞ ¼ iyuðt;x; yÞgðxÞ;

@f

@x
ðt;x; yÞ ¼ uðt; x; yÞ i

y
l

gðxÞ þ g0ðxÞ

� �
:

By applying the change of variables formula for processes with finite variation,
we get

df ðt;X t; I tÞ

¼
@f

@t
ðt;X t; I tÞ � lX t

@f

@x
ðt;X t; I tÞ þ

@f

@y
ðt;X t; I tÞ

� �
dt

þ
@f

@x
ðt;X t�; I tÞdZt þ

Z 0

�1

f ðx þ r; yÞ � f ðx; yÞ �
@f

@x
ðx; yÞrJðdrÞdt

¼ uðt; x; yÞ b þ

Z 0

�1

ðe
y
lr � 1ÞrwðrÞnðdrÞ � lX t

� �
g0ðxÞ

�
�

Z 0

�1

ðgðx þ rÞ � gðxÞ � g0ðxÞrwðrÞÞe
y
lrnðdrÞ

þ �gþ ib
y
l
þ

Z 0

�1

e
y
lr � 1� i

y
l

rwðrÞ
� �

nðdrÞ

� �
gðxÞ

�
dt þ Nt;

where ðNt; tX0Þ is a F-martingale. Consequently, by using the fact that g is a
solution of Eq. (3.8), we have shown that ðMt; tX0Þ is also a purely discontinuous
martingale with respect to the natural filtration of X.

Next, we derive the following estimates, for any tX0:

E½jMTy^tj
pE H g
l;
iy
l
ðX Ty^tÞ

��� ���h i
pE H g

l;
y
l
ðX Ty^tÞ

��� ���h i
pE H g

l;
y
l
ðyÞ

��� ���h i
o1:

We complete the proof of the corollary by applying the Doob’s optional sampling
theorem at the bounded stopping time Ty ^ t and the dominated convergence
theorem. &
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In the sequel, we assume that the exponential moments of the BDLP Z are finite,
that is

Assumption 2.
R

ro�1 evrnðdrÞo1 for every v 2 R:

Theorem 9. For g; y; l40 and y4x we have

Pðg;�yÞ
y ðxÞ ¼ e

y
lðy�xÞ

H g
l;�

y
l
ðxÞ

H g
l;�

y
l
ðyÞ

: ð3:9Þ

Proof. It is well known that when the Lévy measure of Z satisfies the Assumption 2,
its Laplace exponent is an entire function, see Skorohod [18]. Then we can follow the
same route as for the proof of the Theorem 6, but using the martingale ðexpð�xZt �

tcð�xÞÞ; tX0Þ; for any x40; in the Girsanov transform. &

Remark 10. For a fixed d40; if we assume only that
R

ro�1 e�
d
lrnðdrÞo1; thenPðg;�yÞ

is well defined for any yod; since the Laplace exponent is analytic in a convex
domain.
4. The stable case

We investigate the stable OU processes, i.e. the GOU processes with stable
BDLPs, in more detail. We recall that a stable process Z :¼ ðZt; tX0Þ with index
a 2 ð0; 2
 is a Lévy process which enjoys the self-similarity property ðZkt; tX0Þ ¼

ðdÞ

ðk1=aZt; tX0Þ; for any k40:
If the stable process has non-positive jumps, excluding the negative of stable

subordinator, its Laplace exponent is given, for 1oap2; by

cðuÞ ¼ cua; uX0; (4.1)

where c ¼ ~c jcosð1
2
paÞj�1 and ~c40; see Sato [16, Example 46.7]. Finally, it is worth

noting that if Z is a stable process, with index a; we have the following representation
for X, for any tX0;

X t ¼ e�ltðx þ ~ZkðtÞÞ; (4.2)

where ~Z is an a-stable Lévy process defined on the same probability space as Z and
kðtÞ ¼ ealt�1

al :
We now compute the Laplace transform of the first passage time of a constant

level by the stable OU process (a 2 ð1; 2
). As we have said, another proof exists of
this result, see Hadjiev [9]. However, we shall describe a methodology which can be
extended to more general self-similar Markov processes with one sided jumps and
for which singleton is regular for itself. For instance, we refer to Lamperti [11] for a
characterization of self-similar processes in Rþ; the so-called semi-stable processes.
Our proof is based on the self-similarity property of Z. We shall proceed in two
steps. First, we give the Mellin transform of the first passage time of the BDLP to a
specific curve, see Shepp [17] and Yor [19] for self-similar diffusions with continuous
paths and Novikov [14] for spectrally negative Lévy processes. Using a deterministic
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time change we then derive the Laplace transform of Ty: It is clear that the first
passage time of a constant level of these processes inherits the self-similarity
property. Consequently, a unique monotone and continuous function j exists such
that, for g40

Ex½expð�gtyÞ
 ¼
jðg1=axÞ

jðg1=ayÞ
; (4.3)

where xwy depending on the side of the jumps of X. We recall that in the stable case
jðxÞ ¼ e�c�1=ax: In order to emphasize the role played by the scaling property in the
proof of the following result we shall keep the notation j: We introduce the
following positive random variable

td
y ¼ inffsX0; Zs4yðs þ dÞ1=ag ðy4xÞ; (4.4)

which is the first passage time of the process Z above the curve yðt þ dÞa:

Theorem 11. For 1oap2 and m40; the Mellin transform of the random variable td
y is

given by

Ex½ðtd
y þ dÞ�m; td

yo1
 ¼ d�m Ha
mðd

�1=axÞ

Ha
mðyÞ

; ð4:5Þ

where

Ha
mð�xÞ ¼

Z 1

0

jð�xr1=aÞe�rrm�1 dr ð4:6Þ

¼ a
X1
k¼0

ð�1ÞkGðka þ mÞ

ck=ak!
xk: ð4:7Þ

Proof. From (2.2) and the self-similarity of Z, it is clear that the process
ðe�gtjðg1=aZtÞ; tX0Þ is an F-martingale. By an application of Doob’s optional
sampling theorem, we have (using the bounded stopping time td

y ^ t and then
applying the dominated convergence theorem)

Ex½e
�gtd

yjðg1=aZtd
y
Þ
 ¼ jðg1=axÞ; ð4:8Þ

where by integrating both sides of (4.8) by the measure e�dggm�1dg; and using
Fubini’s theorem we get

Ex

Z 1

0

e�gtd
yjðg1=aZtd

y
Þe�dggm�1dg

� �
¼

Z 1

0

jðg1=axÞe�dggm�1dg:

Using the fact that Z has non-positive jumps, it follows that Ztd
y
¼ yðtd

y þ dÞ1=a:
Thus,

Ex

Z 1

0

e�gðtd
yþdÞj g1=ayðtd

y þ dÞ1=a
� 	

gm�1dg
� �

¼ d�mHa
mðd

�1=axÞ:
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The change of variable r ¼ gðtd
y þ dÞ yields

Ex

Z 1

0

e�rjðr1=ayÞrm�1ðtd
y þ dÞ�m dr

� �
¼ d�mHa

mðd
�1=axÞ:

Thus, we have

Ex½ðtd
y þ dÞ�m


 ¼ d�m Ha
mðd

�1=axÞ

Ha
mðyÞ

: (4.9)

Next, note that

Ha
mð�xÞ ¼

X1
k¼0

ð�1Þkðc�1=axÞk

k!

Z 1

0

e�rrmþk
a�1 dr:

The proof is then completed by using the identity GðzÞ ¼
R1
0 e�rrz�1 dr;

RðzÞ40: &

For more information on the property of the function H, we refer to Novikov [14].
As a consequence we state the following result:

Theorem 12. The Laplace transform of the random variable Ty is given by

Ex½expð�gTyÞ
 ¼
Ha

g
al
ððalÞ1=axÞ

Ha
g
al
ððalÞ1=ayÞ

; y4x: (4.10)

Proof. Fix y4x: We have the following relationship between first passage times:

Ty ¼ inffsX0; X s4yg

¼ inf sX0; e�lt x þ

Z t

0

els dZs

� �
4y

� �
¼ inffsX0; e�ltðx þ ~ZtðsÞÞ4yg

¼ kðinffsX0; x þ ~Zs4yðals þ 1Þ1=agÞ

¼ kðT ðalÞ�1

ðalÞ1=ay
Þ;

where we have performed the deterministic time change kðtÞ ¼ t�1ðtÞ; i.e. kðtÞ ¼
1
al lnðalt þ 1Þ: Therefore,

Ex½expð�gTyÞ
 ¼ Ex alT
ðalÞ�1

ðalÞ1=ay
þ 1

� 	� g
la

� �
¼ ðalÞ�

g
laEx T

ðalÞ�1

ðalÞ1=ay
þ ðalÞ�1

� 	� g
la

� �

¼
Ha

g
al
ððalÞ1=axÞ

Ha
g
al
ððalÞ1=ayÞ

: &
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Finally, we mention the expression of Pðg;yÞ
y in the following:

Theorem 13. For g40; y 2 R and y4x; we have

Pðg;yÞ
y ðxÞ ¼ e�

y
lðy�xÞ

Ha
g
l;
y
l
ðxÞ

Ha
g
l;
y
l
ðyÞ

; (4.11)

where Ha
n;bðxÞ ¼

R1
0

exp xr � c
l

R r

0
ðv þ bÞa dv

v

� 

rn�1 dr:

Remark 14. When Z is a Brownian with drift b (i.e. a ¼ 2; c ¼ 1
2
), we obtain

Pðg;yÞ
y ðxÞ ¼ el=2ðx

2�y2Þ�lbðx�yÞ
Dnð�

ffiffiffiffiffi
2l

p
ðx � b

l �
y
l2
ÞÞ

Dnð�
ffiffiffiffiffi
2l

p
ðy � b

l �
y
l2
ÞÞ
; (4.12)

where n :¼ y2

2l3
þ by

l2
�

g
l and DnðxÞ ¼

e�x2=2

Gð�nÞ

R1
0

exp �xr � 1
2

r2
� 


r�n�1 dr denotes the

cylinder parabolic function, see e.g. Lebedev [12]. We also note that, by taking
b ¼ 0 in (4.12), we recover the result of Lachal [10].

5. Application to finance

We apply the results of the previous sections to the pricing of a European option
on maximum on yields in the generalized Vasicek framework. We extend the results
of Leblanc and Scaillet [13] by allowing jumps in the interest rate dynamics. We refer
to their paper for the motivation and the description of the financial problems.

In our framework, that is when the interest rate dynamics is given as the solution
to (1.1), it is an easy task to derive the current price of the discount bond

Pxð0;TÞ :¼ Ex exp �

Z T

0

X s ds

� �� �
¼ expðAðTÞx þ DðTÞÞ; ð5:1Þ

where AðtÞ ¼ 1
l ð1� e�ltÞ and DðtÞ ¼ �

R t

0
cðAðrÞÞdr; where c stands for the Laplace

exponent of Z. The price of the option is given by

CX ð0;T�;K ; x;TÞ :¼ Ex e
�
R T

0
X s ds

sup
u2½0;T�


X ðu;TÞ � K

 !þ" #
;

where K 2 Rþ (resp. T� 2 Rþ) denotes the strike (resp. the time to maturity). Next,
we shall give a closed form expression for the Laplace transform with respect to time
to maturity of this functional. For g40; we introduce the notation

Lgð0;K ; x;TÞ :¼

Z 1

0

e�gT�

CX ð0;T�;K ; x;TÞdT�: (5.2)

Proposition 15. We assume that
R

ro�1 e�
1
lrnðdrÞo1: Then, for xpK ; we have

Lgð0;K ; x;TÞ ¼ H g
l;�

1
l
ðxÞ

Z 1

K

ey=l PgðyÞ

H g
l;�

1
l
ðyÞ

dy; (5.3)

where PgðyÞ :¼
R1
0

e�gT Pyð0;TÞdT :
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Proof. By using the strong Markov property of the process X we obtain

Lgð0;K ; x;TÞ ¼ Ex

Z 1

K

dy

Z 1

0

dT� exp �gT� �

Z T�

0

X s ds

� �
I sup½0;T�
ru4yf g

� �
¼ Ex

Z 1

K

dy

Z 1

Ty

dT� exp �gT� �

Z T�

0

X s ds

� �" #

¼ Ex

Z 1

K

dy

Z 1

Ty

dT� exp �gðT� � TyÞ � gTy

�"

�

Z Ty

0

X s ds �

Z T�

Ty

X s ds

!#

¼

Z 1

K

dyEx exp �gTy �

Z Ty

0

X s ds

� �� �
PgðyÞ:

To get the desired expression for the Laplace transform of the option price it remains
for us to compute Ex½expð�gTy �

R Ty

0
X s dsÞ
: From Theorem 9 and Remark 10,

choosing y ¼ 1; we obtain

Ex exp �gTy �

Z Ty

0

X s ds

� �� �
¼ e

1
lðy�xÞ

H g
l;�

1
l
ðxÞ

H g
l;�

1
l
ðyÞ

:

The identity (5.3) follows. &

Finally, we conclude this section by investigating the possibility that the interest
rates in the mean reverting stable Vasicek model, become negative. In this case, we
have cðuÞ ¼ bu þ cdaua; d40: The Laplace transform of the limiting distribution of
the process X is given by

E½expðurX Þ
 ¼ exp cdaua
Z 1

0

e�lar dr þ bu

Z 1

0

e�lr dr

� �
;

¼ exp
cda

la
ua þ

b

l
u

� �
:

We recognize the Laplace transform of a a-stable random variable with da=la; b ¼

�1 and b=l: In Table 1, we show the probability of a negative long-term interest rate
Table 1

Probabilities of negative long-term interest rate pn and mean value r̄ for different values of the stable index

(b ¼ 0:01; l ¼ 0:1; d ¼ 0:00025)

a pnð�Þ y

2 0 1

1.8 1:1� 10�7 0.0996

1.5 6:4� 10�5 0.099

1.2 0.015 0.086
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pn and the mean value r̄ for different values of the index but with the other parameter
being constant (b ¼ 0:01; l ¼ 0:1 and d ¼ 0:00025). These results are the outcomes
of Monte Carlo simulation. We recall that for a ¼ 2 the mean value is simply given
by the coefficient of the drift term b=l; whereas for 1oao2 the stable random
variables without drift are not centered. We observe that the probability of negative
interest rate decreases with the index a; but remains very small for moderate values
of a: Moreover, the mean value of X stays almost unchanged for the same value of
the index and equals the ratio b=l ¼ 0:1; which is a realistic level, for instance, for an
annual interest rate. It is worth noting that it is possible to get both very small values
for pn and reasonable values for long-term interest rates y for any a by playing with
the family of the parameters ðl; b; dÞ:
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