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Announcements 10/5/2021

» section this week: generalization and validation
» hw3 due next week, Friday 10am
P> save slip days for emergencies

» project peer reviews due Sunday 11:59pm
» iClicker not working? alas, best bet is to buy the app. ..
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Announcements 10/7/2021

» quiz opens at noon today (Thursday), closes noon Saturday;
take it before your fall break begins!

» project peer reviews due Sunday 11:59pm
» hw3 due next week, Friday 10am
» save slip days for emergencies

> section next week (W only): advanced scikit-learn
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Poll: fall break

For fall break, I'm

A.

mUnw

traveling starting Thursday
traveling starting Friday
traveling starting Saturday
staying in Ithaca

other
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Poll: project presentations

I'd prefer to do the project presentations

A. live

B. as a video recording
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Linear algebra review

Definition

The null space of a matrix X : R™? is
nullspace(X) = {w € RY : Xw = 0}

(The all-zero vector 0 is always in the null space.)
The following conditions are equivalent:

» nullspace(X) = {0}

» If Xw =0, then w=0

» The columns of X are linearly independent

» VzeR" if Xw=2zand Xw' = z, then w = w/
>

X has a left inverse
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Notation: standard basis vectors

» ¢ is the first standard basis vector (1,0,...,0)
» e is the second standard basis vector (0,1,0,...,0)
> {e1,...,eq} form the standard basis in R?
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What if the Gram matrix is not invertible?

» Least squares objective:
minimize ly — Xw]|?
» Normal equations:
XTXw=XTy
» Solution if XT X is invertible:

w=(XTX)"IXxTy
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Poll: rank-deficient normal equations

Normal equations:
X" Xw = XTy

Q: if X7 X is not invertible, do the normal equations still define
the solution?

A. yes

B. no
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Poll: rank-deficient normal equations

Normal equations:
X" Xw = XTy

Q: if X7 X is not invertible, do the normal equations still define
the solution?

A. yes
B. no

A: yes! we derived them with no assumptions.
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Outline

The SVD
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The Singular Value Decomposition (SVD)

suppose d < n. SVD rewrites X € R™*9 in terms of easier
matrices:

> X=UxzVv’

> U e R™ s orthogonal: UTU = Iy

> V e R is orthogonal: VTV = WT =,

> Y € RY*9 is diagonal and nonnegative:
>y, >0fri=1,....d
> >;=0fori#j
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The Singular Value Decomposition (SVD)

suppose d < n. SVD rewrites X € R™*9 in terms of easier
matrices:

> X=UxzVv’

> U e R™ s orthogonal: UTU = Iy

> V e R is orthogonal: VTV = WT =,

> Y € RY*9 is diagonal and nonnegative:
> Z,’,‘ZOfOrI.:l,...7d
> >;=0fori#j

use the SVD (in python,
scipy.linalg.svd(X, full_matrices=False))

U,S,V = svd(X)

can compute SVD factorization of X in O(nd?) flops
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Thin SVD

to make thin SVD, delete zeros from X

r = Rank(X)

X=UzvT

U € R™" has orthogonal columns: UTU = I,
V € RY*" has orthogonal columns: VTV = |,
Y € R™ is diagonal and positive:

> Yi;>0fori=1,...r
> Y;=0fori#j

vvyyvyVvVyy
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SVD for least squares

if X = UZVT =>""_, o;u;v. is the thin SVD, then
X" X =vTuTuzv’T = vx?vT
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SVD for least squares
if X = UZVT =>""_, o;u;v. is the thin SVD, then
X"™X=vxTuTuzv’ = vx2vT
normal equations are

X" Xw = XTy
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SVD for least squares

if X = UZVT =>""_, o;u;v. is the thin SVD, then
X' X=vzTuTuzv’™ = vx2vT
normal equations are
X" Xw = XTy
vEivTw vuTy
y2vTvelvTw Y 2vTvyuTy
viw = 71Uy

can't solve (V7 not invertible, solution not unique. .. )
guess w = VI 1UTy = 27:1 v,-al-_lu,-Ty:

Viw=VvTvlyTy=x"1u"y

so we've found a solution (without assuming invertibility)!
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Demo: SVD

https://github.com/0RIE4741/demos/SVD. ipynb
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https://github.com/ORIE4741/demos/SVD.ipynb

Review: methods for least squares

| GD | SGM | Gram GD | Parallel GD | QR or SVD

initial
per iter

0 0 nd? nd?/P nd?
nd | |S|d o2 o2 0

(numbers in flops, omitting constants)

| 4
>

gradient descent (most flexible, O(nd) flops per iteration)
QR factorization (most efficient exact solution method,
O(nd?) flops)

SVD factorization (exact solution method, works for
underdetermined problems, O(nd?) flops)

backslash command uses either QR or SVD to ensure
stability + speed

15/25



Outline

Non-uniqueness
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Poll: uniqueness

Normal equations:
X"Xw = XTy

Q: is the solution to the normal equations always unique?

A. yes

B. no
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Poll: uniqueness

Normal equations:
X"Xw = XTy

Q: is the solution to the normal equations always unique?
A. yes

B. no

A: no, if X7 X is not invertible, the solution is not unique!
if Rank(X T X) < d, then for some v # 0, X7 Xv = 0.
soif X" Xw = XTy, then X" X(w +av) = Xy for any a € R.
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Poll: uniqueness

Normal equations:
X"Xw = XTy

Q: is the solution to the normal equations always unique?

A. yes
B. no

A: no, if X7 X is not invertible, the solution is not unique!
if Rank(XTX) < d, then for some v # 0, XTXv =0.
soif X" Xw = XTy, then X" X(w +av) = Xy for any a € R.
Q: is non-uniqueness a problem for a predictive model?
A. yes
B. no
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v

Example: non-uniqueness

goal: predict cancer risk from mutations in genes
Xij is 1 if person i has a mutation in gene j

genes 1 and 2 vary together: every person with a mutation
in gene 1 has one in gene 2, too, and vice versa

so the first and second column of X are identical: Xi. = Xo.
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Example: non-uniqueness (1)

Xl: = X2:

suppose our least squares solution is w
w' = w + ae; — aer, for o € R, makes the same
predictions:

Xw' = X(w+ ae; —ae) = Xw + aX(e; — &)
= Xw+ a(Xy. — Xo.) = Xw

NOW suppose a new person x arrives with a mutation in
gene 1 (x; = 1) but not in gene 2 (x = 0).
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Example: non-uniqueness (1)

Xl: = X2:

» suppose our least squares solution is w
» w = w -+ ae; — ae, for o € R, makes the same
predictions:
Xvw' = X(w+ ae —ae) = Xw+ aX(e1 — &)
= Xw+ a(Xy. — Xo.) = Xw
» now suppose a new person x arrives with a mutation in
gene 1 (x; = 1) but not in gene 2 (x2 = 0).
Q: do w and w’ make the same prediction?

A. yes
B. no

Q: what criteria might you pick to choose a good w?

A: pick a w that's small; it will make less crazy predictions )
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Outline

Quadratic regularization
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Quadratic regularization

add a small penalty for large coefficients
. 2 2
minimize ||y — Xw||~ + A[|w/|

where A > 0 is the regularization parameter

(also called “regularized least squares”, “ridge regression”,
“Tikhonov regularization”, or “weight decay")

why regularize?

» prevent overfitting
» stabilize estimate

» solution is always unique
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Solving regularized regression

minimize ||y — Xw||> + A[|w/||?

> solve by setting the derivative to 0: optimal w"9&® satisfies
0 = Vridge (Hy _ XWridge”2 +)\||Wridge||2)

— —2XTy+2XTXWridge+2)\Wridge
(XTX+)\I)Wridge _ XTy

Poll: is XT X + A\ invertible for A > 07?

A. always

B. if A is larger than the smallest eigenvalue of X7 X
C. if X is full rank
D

. hever
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Review: why is X7 X + )\ invertible?

> et
X=UuzVv’
be the full SVD
» then
XTX+ X = vZUuUTuzvT +

VEAVT £ AW = v(Z2+ ANV T,
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Review: why is X7 X + )/ invertible?

let
X=UuzVv’
be the full SVD
then
XTX+ X = vZUuUTuzvT +

VEAVT £ AW = v(Z2+ ANV T,

use the fact that for the full SVD, V-1 =VvT

and Y2 + M is diagonal with strictly positive entries, so
invertible
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Review: why is X7 X + )/ invertible?

let
X=UuzVv’
be the full SVD
then
XTX+ X = vZUuUTuzvT +

VEAVT £ AW = v(Z2+ ANV T,

use the fact that for the full SVD, V-1 =VvT

and Y2 + M is diagonal with strictly positive entries, so
invertible

let's compute the inverse:

XTXAAN = (V) {224 ANVt = v(224a) 7LV,
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Solving regularized regression

minimize |ly — Xw|? + \||w|?

> solve by setting the derivative to 0: optimal w'8¢ satisfies

0 = vridge (Hy _XWridge”2 + )\||Wridge||2)

_ —2XTy+2XTXWridge—|—2>\Wridge
(XTX-f-)\/)Wridge — XT_y

> XTX + A is always invertible, so

Wridge — (XTX + )\I)_IXTy
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Quadratic regularization and the SVD

suppose X = UL VT is the (full) SVD of X.

regularized solution is

Wndge

(XTX +ANIXTy
(VEUTUZVT A tveuTy
(v=2vT L vianvh)tvzuTy
V(Z2+ANtvTvzuTy
V(Z2+AN)txuTy

d

ZVI 20—_;._)\ uiy

i=1
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Quadratic regularization and the SVD

suppose X = UL VT is the (full) SVD of X.

regularized solution is

Wndge

ridge regression shrinks o;

(XTX +ANIXTy
(VEUTUZVT A tveuTy
(v=2vT L vianvh)tvzuTy
V(Z2+ANtvTvzuTy
V(Z2+AN)txuTy

d

ZVI 20—_;._)\ uiy

i=1

1

o gj
- O'I-2 to O'I-2+)\
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