ORIE 4741: Learning with Big Messy Data

Underdetermined Least Squares and Quadratic Regularization

Professor Udell
Operations Research and Information Engineering
Cornell

October 16, 2021

Announcements 10/5/2021

- section this week: generalization and validation
- hw3 due next week, Friday 10am
- save slip days for emergencies
- project peer reviews due Sunday 11:59pm
- iClicker not working? alas, best bet is to buy the app...

Announcements 10/7/2021

- quiz opens at noon today (Thursday), closes noon Saturday; take it before your fall break begins!
- project peer reviews due Sunday 11:59pm
- hw3 due next week, Friday 10am
- save slip days for emergencies
- section next week (W only): advanced scikit-learn

Poll: fall break

For fall break, I'm
A. traveling starting Thursday
B. traveling starting Friday
C. traveling starting Saturday
D. staying in Ithaca
E. other

Poll: project presentations

I'd prefer to do the project presentations
A. live
B. as a video recording

Linear algebra review

Definition

The null space of a matrix $X: \mathbf{R}^{n \times d}$ is

$$
\text { nullspace }(X)=\left\{w \in \mathbf{R}^{d}: X w=0\right\}
$$

(The all-zero vector 0 is always in the null space.)
The following conditions are equivalent:

- nullspace $(X)=\{0\}$
- If $X w=0$, then $w=0$
- The columns of X are linearly independent
- $\forall z \in \mathbf{R}^{n}$, if $X w=z$ and $X w^{\prime}=z$, then $w=w^{\prime}$
- X has a left inverse

Notation: standard basis vectors

- e_{1} is the first standard basis vector $(1,0, \ldots, 0)$
- e_{2} is the second standard basis vector $(0,1,0, \ldots, 0)$
- $\left\{e_{1}, \ldots, e_{d}\right\}$ form the standard basis in \mathbf{R}^{d}

What if the Gram matrix is not invertible?

- Least squares objective:

$$
\operatorname{minimize} \quad\|y-X w\|^{2}
$$

- Normal equations:

$$
X^{T} X w=X^{T} y
$$

- Solution if $X^{T} X$ is invertible:

$$
w=\left(X^{T} X\right)^{-1} X^{T} y
$$

Poll: rank-deficient normal equations

Normal equations:

$$
X^{\top} X w=X^{\top} y
$$

Q: if $X^{\top} X$ is not invertible, do the normal equations still define the solution?
A. yes
B. no

Poll: rank-deficient normal equations

Normal equations:

$$
X^{\top} X w=X^{\top} y
$$

Q: if $X^{\top} X$ is not invertible, do the normal equations still define the solution?
A. yes
B. no

A: yes! we derived them with no assumptions.

Outline

The SVD

Non-uniqueness

Quadratic regularization

The Singular Value Decomposition (SVD)

suppose $d \leq n$. SVD rewrites $X \in \mathbf{R}^{n \times d}$ in terms of easier matrices:

- $X=U \Sigma V^{T}$
- $U \in \mathbf{R}^{n \times d}$ is orthogonal: $U^{T} U=I_{d}$
- $V \in \mathbf{R}^{d \times d}$ is orthogonal: $V^{T} V=V V^{T}=I_{d}$
- $\Sigma \in \mathbf{R}^{d \times d}$ is diagonal and nonnegative:
- $\Sigma_{i i} \geq 0$ for $i=1, \ldots, d$
- $\Sigma_{i j}=0$ for $i \neq j$

The Singular Value Decomposition (SVD)

suppose $d \leq n$. SVD rewrites $X \in \mathbf{R}^{n \times d}$ in terms of easier matrices:

- $X=U \Sigma V^{T}$
- $U \in \mathbf{R}^{n \times d}$ is orthogonal: $U^{T} U=I_{d}$
- $V \in \mathbf{R}^{d \times d}$ is orthogonal: $V^{T} V=V V^{T}=I_{d}$
- $\Sigma \in \mathbf{R}^{d \times d}$ is diagonal and nonnegative:
- $\Sigma_{i i} \geq 0$ for $i=1, \ldots, d$
- $\Sigma_{i j}=0$ for $i \neq j$
use the SVD (in python,
scipy.linalg.svd(X, full_matrices=False))

$$
U, S, V=\operatorname{svd}(X)
$$

can compute $S V D$ factorization of X in $\mathcal{O}\left(n d^{2}\right)$ flops

Thin SVD

to make thin SVD, delete zeros from Σ

- $r=\operatorname{Rank}(X)$
- $X=U \Sigma V^{T}$
- $U \in \mathbf{R}^{n \times r}$ has orthogonal columns: $U^{T} U=I_{r}$
- $V \in \mathbf{R}^{d \times r}$ has orthogonal columns: $V^{T} V=I_{r}$
- $\Sigma \in \mathbf{R}^{r \times r}$ is diagonal and positive:
- $\Sigma_{i i}>0$ for $i=1, \ldots, r$
- $\Sigma_{i j}=0$ for $i \neq j$

SVD for least squares

$$
\begin{aligned}
& \text { if } X=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T} \text { is the thin SVD, then } \\
& \qquad X^{T} X=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
\end{aligned}
$$

SVD for least squares

if $X=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$ is the thin SVD, then

$$
X^{T} X=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

normal equations are

$$
X^{T} X_{w}=X^{T} y
$$

SVD for least squares

if $X=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$ is the thin SVD, then

$$
X^{T} X=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

normal equations are

$$
\begin{aligned}
X^{T} X w & =X^{T} y \\
V \Sigma^{2} V^{T} w & =V \Sigma U^{T} y
\end{aligned}
$$

SVD for least squares

if $X=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$ is the thin SVD, then

$$
X^{T} X=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

normal equations are

$$
\begin{aligned}
X^{T} X w & =X^{T} y \\
V \Sigma^{2} V^{T} w & =V \Sigma U^{T} y \\
\Sigma^{-2} V^{T} V \Sigma^{2} V^{T} w & =\Sigma^{-2} V^{T} V \Sigma U^{T} y
\end{aligned}
$$

SVD for least squares

if $X=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$ is the thin SVD, then

$$
X^{T} X=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

normal equations are

$$
\begin{aligned}
x^{\top} X w & =x^{T} y \\
V \Sigma^{2} V^{\top} w & =V \Sigma U^{T} y \\
\Sigma^{-2} V^{T} V \Sigma^{2} V^{\top} w & =\Sigma^{-2} V^{T} V \Sigma U^{T} y \\
V^{\top} w & =\Sigma^{-1} U^{T} y
\end{aligned}
$$

can't solve (V^{T} not invertible, solution not unique...)

SVD for least squares

if $X=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$ is the thin SVD, then

$$
X^{T} X=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

normal equations are

$$
\begin{aligned}
X^{\top} X w & =X^{T} y \\
V \Sigma^{2} V^{T} w & =V \Sigma U^{T} y \\
\Sigma^{-2} V^{T} V \Sigma^{2} V^{T} w & =\Sigma^{-2} V^{T} V \Sigma U^{T} y \\
V^{T} w & =\Sigma^{-1} U^{T} y
\end{aligned}
$$

can't solve (V^{T} not invertible, solution not unique...) guess $w=V \Sigma^{-1} U^{T} y=\sum_{i=1}^{d} v_{i} \sigma_{i}^{-1} u_{i}^{T} y$:

SVD for least squares

if $X=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$ is the thin SVD, then

$$
X^{T} X=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

normal equations are

$$
\begin{aligned}
X^{\top} X w & =X^{\top} y \\
V \Sigma^{2} V^{\top} w & =V \Sigma U^{T} y \\
\Sigma^{-2} V^{\top} V \Sigma^{2} V^{\top} w & =\Sigma^{-2} V^{\top} V \Sigma U^{\top} y \\
V^{\top} w & =\Sigma^{-1} U^{T} y
\end{aligned}
$$

can't solve (V^{T} not invertible, solution not unique...) guess $w=V \Sigma^{-1} U^{T} y=\sum_{i=1}^{d} v_{i} \sigma_{i}^{-1} u_{i}^{T} y$:

$$
V^{T} w=V^{T} V \Sigma^{-1} U^{T} y=\Sigma^{-1} U^{T} y
$$

so we've found a solution (without assuming invertibility)!

Demo: SVD

https://github.com/ORIE4741/demos/SVD.ipynb

Review: methods for least squares

	GD	SGM	Gram GD	Parallel GD	QR or SVD
initial	0	0	$n d^{2}$	$n d^{2} / P$	$n d^{2}$
per iter	$n d$	$\|S\| d$	d^{2}	d^{2}	0

(numbers in flops, omitting constants)

- gradient descent (most flexible, $O(n d)$ flops per iteration)
- QR factorization (most efficient exact solution method, $O\left(n d^{2}\right)$ flops $)$
- SVD factorization (exact solution method, works for underdetermined problems, $O\left(n d^{2}\right)$ flops)
- backslash command uses either QR or SVD to ensure stability + speed

Outline

The SVD

Non-uniqueness

Quadratic regularization

Poll: uniqueness

Normal equations:

$$
X^{T} X_{w}=X^{T} y
$$

Q: is the solution to the normal equations always unique?
A. yes
B. no

Poll: uniqueness

Normal equations:

$$
X^{T} X_{w}=X^{T} y
$$

Q: is the solution to the normal equations always unique?
A. yes
B. no

A: no, if $X^{T} X$ is not invertible, the solution is not unique! if $\operatorname{Rank}\left(X^{\top} X\right)<d$, then for some $v \neq 0, X^{\top} X_{v}=0$.
so if $X^{T} X w=X^{T} y$, then $X^{T} X(w+\alpha v)=X^{T} y$ for any $\alpha \in \mathbf{R}$.

Poll: uniqueness

Normal equations:

$$
X^{T} X_{w}=X^{T} y
$$

Q: is the solution to the normal equations always unique?
A. yes
B. no

A: no, if $X^{T} X$ is not invertible, the solution is not unique! if $\operatorname{Rank}\left(X^{\top} X\right)<d$, then for some $v \neq 0, X^{\top} X v=0$. so if $X^{\top} X w=X^{\top} y$, then $X^{\top} X(w+\alpha v)=X^{\top} y$ for any $\alpha \in \mathbf{R}$.
\mathbf{Q} : is non-uniqueness a problem for a predictive model?
A. yes
B. no

Example: non-uniqueness

- goal: predict cancer risk from mutations in genes
- $X_{i j}$ is 1 if person i has a mutation in gene j
- genes 1 and 2 vary together: every person with a mutation in gene 1 has one in gene 2 , too, and vice versa
- so the first and second column of X are identical: $X_{1}:=X_{2}$:

Example: non-uniqueness (II)

$$
X_{1:}=X_{2}
$$

- suppose our least squares solution is w
- $w^{\prime}=w+\alpha e_{1}-\alpha e_{2}$, for $\alpha \in \mathbf{R}$, makes the same predictions:

$$
\begin{aligned}
X w^{\prime} & =X\left(w+\alpha e_{1}-\alpha e_{2}\right)=X w+\alpha X\left(e_{1}-e_{2}\right) \\
& =X w+\alpha\left(X_{1:}-X_{2:}\right)=X w
\end{aligned}
$$

- now suppose a new person x arrives with a mutation in gene $1\left(x_{1}=1\right)$ but not in gene $2\left(x_{2}=0\right)$.

Example: non-uniqueness (II)

$$
X_{1:}=X_{2}
$$

- suppose our least squares solution is w
- $w^{\prime}=w+\alpha e_{1}-\alpha e_{2}$, for $\alpha \in \mathbf{R}$, makes the same predictions:

$$
\begin{aligned}
X w^{\prime} & =X\left(w+\alpha e_{1}-\alpha e_{2}\right)=X w+\alpha X\left(e_{1}-e_{2}\right) \\
& =X w+\alpha\left(X_{1:}-X_{2:}\right)=X w
\end{aligned}
$$

- now suppose a new person x arrives with a mutation in gene $1\left(x_{1}=1\right)$ but not in gene $2\left(x_{2}=0\right)$.
Q: do w and w^{\prime} make the same prediction?
A. yes
B. no

Example: non-uniqueness (II)

$$
X_{1:}=X_{2}
$$

- suppose our least squares solution is w
- $w^{\prime}=w+\alpha e_{1}-\alpha e_{2}$, for $\alpha \in \mathbf{R}$, makes the same predictions:

$$
\begin{aligned}
X_{w^{\prime}} & =X\left(w+\alpha e_{1}-\alpha e_{2}\right)=X w+\alpha X\left(e_{1}-e_{2}\right) \\
& =X w+\alpha\left(X_{1:}-X_{2:}\right)=X w
\end{aligned}
$$

- now suppose a new person x arrives with a mutation in gene $1\left(x_{1}=1\right)$ but not in gene $2\left(x_{2}=0\right)$.
Q: do w and w^{\prime} make the same prediction?
A. yes
B. no

Q: what criteria might you pick to choose a good w?

Example: non-uniqueness (II)

$$
X_{1:}=X_{2}
$$

- suppose our least squares solution is w
- $w^{\prime}=w+\alpha e_{1}-\alpha e_{2}$, for $\alpha \in \mathbf{R}$, makes the same predictions:

$$
\begin{aligned}
X_{w^{\prime}} & =X\left(w+\alpha e_{1}-\alpha e_{2}\right)=X w+\alpha X\left(e_{1}-e_{2}\right) \\
& =X w+\alpha\left(X_{1:}-X_{2:}\right)=X w
\end{aligned}
$$

- now suppose a new person x arrives with a mutation in gene $1\left(x_{1}=1\right)$ but not in gene $2\left(x_{2}=0\right)$.
Q: do w and w^{\prime} make the same prediction?
A. yes
B. no

Q: what criteria might you pick to choose a good w?
A: pick a w that's small; it will make less crazy predictions

Outline

The SVD

Non-uniqueness

Quadratic regularization

Quadratic regularization

add a small penalty for large coefficients

$$
\operatorname{minimize}\|y-X w\|^{2}+\lambda\|w\|^{2}
$$

where $\lambda>0$ is the regularization parameter (also called "regularized least squares", "ridge regression", "Tikhonov regularization", or "weight decay")
why regularize?

- prevent overfitting
- stabilize estimate
- solution is always unique

Solving regularized regression

$$
\operatorname{minimize}\|y-X w\|^{2}+\lambda\|w\|^{2}
$$

- solve by setting the derivative to 0 : optimal $w^{\text {ridge }}$ satisfies

$$
\begin{aligned}
0 & =\nabla^{\text {ridge }}\left(\left\|y-X w^{\text {ridge }}\right\|^{2}+\lambda\left\|w^{\text {ridge }}\right\|^{2}\right) \\
& =-2 X^{T} y+2 X^{T} X w^{\text {ridge }}+2 \lambda w^{\text {ridge }} \\
\left(X^{T} X+\lambda I\right) w^{\text {ridge }} & =X^{T} y
\end{aligned}
$$

Poll: is $X^{T} X+\lambda /$ invertible for $\lambda>0$?
A. always
B. if λ is larger than the smallest eigenvalue of $X^{\top} X$
C. if X is full rank
D. never

Review: why is $X^{\top} X+\lambda /$ invertible?

- let

$$
X=U \Sigma V^{T}
$$

be the full SVD

- then

$$
\begin{aligned}
X^{T} X+\lambda I & =V \Sigma U^{T} U \Sigma V^{T}+\lambda I \\
& =V \Sigma^{2} V^{T}+\lambda V V^{T}=V\left(\Sigma^{2}+\lambda I\right) V^{T}
\end{aligned}
$$

Review: why is $X^{T} X+\lambda /$ invertible?

- let

$$
X=U \Sigma V^{T}
$$

be the full SVD

- then

$$
\begin{aligned}
X^{T} X+\lambda I & =V \Sigma U^{T} U \Sigma V^{T}+\lambda I \\
& =V \Sigma^{2} V^{T}+\lambda V V^{T}=V\left(\Sigma^{2}+\lambda I\right) V^{T}
\end{aligned}
$$

- use the fact that for the full SVD, $V^{-1}=V^{T}$
- and $\Sigma^{2}+\lambda /$ is diagonal with strictly positive entries, so invertible

Review: why is $X^{\top} X+\lambda /$ invertible?

- let

$$
X=U \Sigma V^{T}
$$

be the full SVD

- then

$$
\begin{aligned}
X^{T} X+\lambda I & =V \Sigma U^{T} U \Sigma V^{T}+\lambda I \\
& =V \Sigma^{2} V^{T}+\lambda V V^{T}=V\left(\Sigma^{2}+\lambda I\right) V^{T}
\end{aligned}
$$

- use the fact that for the full SVD, $V^{-1}=V^{T}$
- and $\Sigma^{2}+\lambda /$ is diagonal with strictly positive entries, so invertible
- let's compute the inverse:

$$
\left(X^{T} X+\lambda I\right)^{-1}=\left(V^{T}\right)^{-1}\left(\Sigma^{2}+\lambda I\right)^{-1} V^{-1}=V\left(\Sigma^{2}+\lambda I\right)^{-1} V^{T} .
$$

Solving regularized regression

$$
\operatorname{minimize}\|y-X w\|^{2}+\lambda\|w\|^{2}
$$

- solve by setting the derivative to 0 : optimal $w^{\text {ridge }}$ satisfies

$$
\begin{aligned}
0 & =\nabla^{\text {ridge }}\left(\left\|y-X w^{\text {ridge }}\right\|^{2}+\lambda\left\|w^{\text {ridge }}\right\|^{2}\right) \\
& =-2 X^{T} y+2 X^{T} X w^{\text {ridge }}+2 \lambda w^{\text {ridge }} \\
\left(X^{T} X+\lambda /\right) w^{\text {ridge }} & =X^{T} y
\end{aligned}
$$

- $X^{T} X+\lambda I$ is always invertible, so

$$
w^{\text {ridge }}=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y
$$

Quadratic regularization and the SVD

suppose $X=U \Sigma V^{T}$ is the (full) SVD of X.
regularized solution is

$$
\begin{aligned}
w^{\text {ridge }} & =\left(X^{T} X+\lambda I\right)^{-1} X^{T} y \\
& =\left(V \Sigma U^{T} U \Sigma V^{T}+\lambda I\right)^{-1} V \Sigma U^{T} y \\
& =\left(V \Sigma^{2} V^{T}+V(\lambda I) V^{T}\right)^{-1} V \Sigma U^{T} y \\
& =V\left(\Sigma^{2}+\lambda I\right)^{-1} V^{T} V \Sigma U^{T} y \\
& =V\left(\Sigma^{2}+\lambda I\right)^{-1} \Sigma U^{T} y \\
& =\sum_{i=1}^{d} v_{i} \frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda} u_{i}^{T} y
\end{aligned}
$$

Quadratic regularization and the SVD

suppose $X=U \Sigma V^{T}$ is the (full) SVD of X.
regularized solution is

$$
\begin{aligned}
w^{\text {ridge }} & =\left(X^{T} X+\lambda I\right)^{-1} X^{T} y \\
& =\left(V \Sigma U^{T} U \Sigma V^{T}+\lambda I\right)^{-1} V \Sigma U^{T} y \\
& =\left(V \Sigma^{2} V^{T}+V(\lambda I) V^{T}\right)^{-1} V \Sigma U^{T} y \\
& =V\left(\Sigma^{2}+\lambda I\right)^{-1} V^{T} V \Sigma U^{T} y \\
& =V\left(\Sigma^{2}+\lambda I\right)^{-1} \Sigma U^{T} y \\
& =\sum_{i=1}^{d} v_{i} \frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda} u_{i}^{T} y
\end{aligned}
$$

ridge regression shrinks $\sigma_{i}^{-1}=\frac{\sigma_{i}}{\sigma_{i}^{2}}$ to $\frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda}$

