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Announcements 10/5/2021

I section this week: generalization and validation
I hw3 due next week, Friday 10am

I save slip days for emergencies

I project peer reviews due Sunday 11:59pm

I iClicker not working? alas, best bet is to buy the app. . .
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Announcements 10/7/2021

I quiz opens at noon today (Thursday), closes noon Saturday;
take it before your fall break begins!

I project peer reviews due Sunday 11:59pm
I hw3 due next week, Friday 10am

I save slip days for emergencies

I section next week (W only): advanced scikit-learn
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Poll: fall break

For fall break, I’m

A. traveling starting Thursday

B. traveling starting Friday

C. traveling starting Saturday

D. staying in Ithaca

E. other
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Poll: project presentations

I’d prefer to do the project presentations

A. live

B. as a video recording
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Linear algebra review

Definition

The null space of a matrix X : Rn×d is

nullspace(X ) = {w ∈ Rd : Xw = 0}

(The all-zero vector 0 is always in the null space.)

The following conditions are equivalent:

I nullspace(X ) = {0}
I If Xw = 0, then w = 0

I The columns of X are linearly independent

I ∀z ∈ Rn, if Xw = z and Xw ′ = z , then w = w ′

I X has a left inverse
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Notation: standard basis vectors

I e1 is the first standard basis vector (1, 0, . . . , 0)

I e2 is the second standard basis vector (0, 1, 0, . . . , 0)

I {e1, . . . , ed} form the standard basis in Rd
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What if the Gram matrix is not invertible?

I Least squares objective:

minimize ‖y − Xw‖2

I Normal equations:

XTXw = XT y

I Solution if XTX is invertible:

w = (XTX )−1XT y
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Poll: rank-deficient normal equations

Normal equations:

XTXw = XT y

Q: if XTX is not invertible, do the normal equations still define
the solution?

A. yes

B. no

A: yes! we derived them with no assumptions.
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Outline

The SVD

Non-uniqueness

Quadratic regularization

10 / 25



The Singular Value Decomposition (SVD)

suppose d ≤ n. SVD rewrites X ∈ Rn×d in terms of easier
matrices:

I X = UΣV T

I U ∈ Rn×d is orthogonal: UTU = Id
I V ∈ Rd×d is orthogonal: V TV = VV T = Id
I Σ ∈ Rd×d is diagonal and nonnegative:

I Σii ≥ 0 for i = 1, . . . , d
I Σij = 0 for i 6= j

use the SVD (in python,
scipy.linalg.svd(X, full_matrices=False))

U, S , V = svd (X)

can compute SVD factorization of X in O(nd2) flops
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Thin SVD

to make thin SVD, delete zeros from Σ

I r = Rank(X )

I X = UΣV T

I U ∈ Rn×r has orthogonal columns: UTU = Ir
I V ∈ Rd×r has orthogonal columns: V TV = Ir
I Σ ∈ Rr×r is diagonal and positive:

I Σii > 0 for i = 1, . . . , r
I Σij = 0 for i 6= j
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SVD for least squares

if X = UΣV T =
∑r

i=1 σiuiv
T
i is the thin SVD, then

XTX = VΣTUTUΣV T = VΣ2V T

normal equations are

XTXw = XT y

VΣ2V Tw = VΣUT y

Σ−2V TVΣ2V Tw = Σ−2V TVΣUT y

V Tw = Σ−1UT y

can’t solve (V T not invertible, solution not unique. . . )
guess w = VΣ−1UT y =

∑d
i=1 viσ

−1
i uTi y :

V Tw = V TVΣ−1UT y = Σ−1UT y

so we’ve found a solution (without assuming invertibility)!
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Demo: SVD

https://github.com/ORIE4741/demos/SVD.ipynb

14 / 25

https://github.com/ORIE4741/demos/SVD.ipynb


Review: methods for least squares

GD SGM Gram GD Parallel GD QR or SVD
initial 0 0 nd2 nd2/P nd2

per iter nd |S |d d2 d2 0

(numbers in flops, omitting constants)

I gradient descent (most flexible, O(nd) flops per iteration)

I QR factorization (most efficient exact solution method,
O(nd2) flops)

I SVD factorization (exact solution method, works for
underdetermined problems, O(nd2) flops)

I backslash command uses either QR or SVD to ensure
stability + speed
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Outline

The SVD

Non-uniqueness

Quadratic regularization
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Poll: uniqueness

Normal equations:

XTXw = XT y

Q: is the solution to the normal equations always unique?

A. yes

B. no

A: no, if XTX is not invertible, the solution is not unique!
if Rank(XTX ) < d , then for some v 6= 0, XTXv = 0.
so if XTXw = XT y , then XTX (w +αv) = XT y for any α ∈ R.

Q: is non-uniqueness a problem for a predictive model?

A. yes

B. no
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Example: non-uniqueness

I goal: predict cancer risk from mutations in genes

I Xij is 1 if person i has a mutation in gene j

I genes 1 and 2 vary together: every person with a mutation
in gene 1 has one in gene 2, too, and vice versa

I so the first and second column of X are identical: X1: = X2:
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Example: non-uniqueness (II)

X1: = X2:

I suppose our least squares solution is w
I w ′ = w + αe1 − αe2, for α ∈ R, makes the same

predictions:

Xw ′ = X (w + αe1 − αe2) = Xw + αX (e1 − e2)

= Xw + α(X1: − X2:) = Xw

I now suppose a new person x arrives with a mutation in
gene 1 (x1 = 1) but not in gene 2 (x2 = 0).

Q: do w and w ′ make the same prediction?

A. yes
B. no

Q: what criteria might you pick to choose a good w?
A: pick a w that’s small; it will make less crazy predictions
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Outline

The SVD

Non-uniqueness

Quadratic regularization
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Quadratic regularization

add a small penalty for large coefficients

minimize ‖y − Xw‖2 + λ‖w‖2

where λ > 0 is the regularization parameter

(also called “regularized least squares”, “ridge regression”,
“Tikhonov regularization”, or “weight decay”)

why regularize?

I prevent overfitting

I stabilize estimate

I solution is always unique
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Solving regularized regression

minimize ‖y − Xw‖2 + λ‖w‖2

I solve by setting the derivative to 0: optimal w ridge satisfies

0 = ∇ridge
(
‖y − Xw ridge‖2 + λ‖w ridge‖2

)
= −2XT y + 2XTXw ridge + 2λw ridge

(XTX + λI )w ridge = XT y

Poll: is XTX + λI invertible for λ > 0?

A. always

B. if λ is larger than the smallest eigenvalue of XTX

C. if X is full rank

D. never
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Review: why is XTX + λI invertible?

I let
X = UΣV T

be the full SVD

I then

XTX + λI = VΣUTUΣV T + λI

= VΣ2V T + λVV T = V (Σ2 + λI )V T .

I use the fact that for the full SVD, V−1 = V T

I and Σ2 + λI is diagonal with strictly positive entries, so
invertible

I let’s compute the inverse:

(XTX+λI )−1 = (V T )−1(Σ2+λI )−1V−1 = V (Σ2+λI )−1V T .
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Solving regularized regression

minimize ‖y − Xw‖2 + λ‖w‖2

I solve by setting the derivative to 0: optimal w ridge satisfies

0 = ∇ridge
(
‖y − Xw ridge‖2 + λ‖w ridge‖2

)
= −2XT y + 2XTXw ridge + 2λw ridge

(XTX + λI )w ridge = XT y

I XTX + λI is always invertible, so

w ridge = (XTX + λI )−1XT y

24 / 25



Quadratic regularization and the SVD

suppose X = UΣV T is the (full) SVD of X .

regularized solution is

w ridge = (XTX + λI )−1XT y

= (VΣUTUΣV T + λI )−1VΣUT y

= (VΣ2V T + V (λI )V T )−1VΣUT y

= V (Σ2 + λI )−1V TVΣUT y

= V (Σ2 + λI )−1ΣUT y

=
d∑

i=1

vi
σi

σ2i + λ
uTi y

ridge regression shrinks σ−1i = σi

σ2
i

to σi

σ2
i +λ
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