ORIE 4741: Learning with Big Messy Data Underdetermined Least Squares and Quadratic Regularization

Professor Udell

Operations Research and Information Engineering Cornell

October 16, 2021

Announcements 10/5/2021

- section this week: generalization and validation
- hw3 due next week, Friday 10am
 - save slip days for emergencies
- project peer reviews due Sunday 11:59pm
- iClicker not working? alas, best bet is to buy the app...

Announcements 10/7/2021

- quiz opens at noon today (Thursday), closes noon Saturday; take it before your fall break begins!
- project peer reviews due Sunday 11:59pm
- hw3 due next week, Friday 10am
 - save slip days for emergencies
- section next week (W only): advanced scikit-learn

Poll: fall break

For fall break, I'm

- A. traveling starting Thursday
- B. traveling starting Friday
- C. traveling starting Saturday
- D. staying in Ithaca
- E. other

Poll: project presentations

I'd prefer to do the project presentations

- A. live
- B. as a video recording

Linear algebra review

Definition

The **null space** of a matrix $X : \mathbf{R}^{n \times d}$ is

$$\mathsf{nullspace}(X) = \{ w \in \mathbf{R}^d : Xw = 0 \}$$

(The all-zero vector 0 is always in the null space.)

The following conditions are equivalent:

• nullspace
$$(X) = \{0\}$$

If
$$Xw = 0$$
, then $w = 0$

The columns of X are linearly independent

►
$$\forall z \in \mathbf{R}^n$$
, if $Xw = z$ and $Xw' = z$, then $w = w'$

X has a left inverse

Notation: standard basis vectors

e₁ is the first standard basis vector (1,0,...,0)
 e₂ is the second standard basis vector (0,1,0,...,0)
 {e₁,...,e_d} form the standard basis in R^d

What if the Gram matrix is not invertible?

Least squares objective:

minimize $||y - Xw||^2$

Normal equations:

$$X^T X w = X^T y$$

Solution if $X^T X$ is invertible:

$$w = (X^T X)^{-1} X^T y$$

Poll: rank-deficient normal equations

Normal equations:

$$X^T X w = X^T y$$

Q: if $X^T X$ is not invertible, do the normal equations still define the solution?

- A. yes
- B. no

Poll: rank-deficient normal equations

Normal equations:

$$X^T X w = X^T y$$

Q: if $X^T X$ is not invertible, do the normal equations still define the solution?

A. yes

B. no

A: yes! we derived them with no assumptions.

Outline

The SVD

Non-uniqueness

Quadratic regularization

The Singular Value Decomposition (SVD)

suppose $d \le n$. SVD rewrites $X \in \mathbf{R}^{n \times d}$ in terms of easier matrices:

The Singular Value Decomposition (SVD)

suppose $d \le n$. SVD rewrites $X \in \mathbf{R}^{n \times d}$ in terms of easier matrices:

use the SVD (in python, scipy.linalg.svd(X, full_matrices=False))

U,S,V = svd(X)

can compute SVD factorization of X in $\mathcal{O}(nd^2)$ flops

Thin SVD

to make thin SVD, delete zeros from $\boldsymbol{\Sigma}$

$$\blacktriangleright$$
 $r = \operatorname{Rank}(X)$

$$\blacktriangleright X = U \Sigma V^T$$

▶ $U \in \mathbf{R}^{n \times r}$ has orthogonal columns: $U^T U = I_r$

► $V \in \mathbf{R}^{d \times r}$ has orthogonal columns: $V^T V = I_r$

• $\Sigma \in \mathbf{R}^{r \times r}$ is diagonal and positive:

•
$$\Sigma_{ii} > 0$$
 for $i = 1, \ldots, r$

$$\Sigma_{ij} = 0 \text{ for } i \neq j$$

if
$$X = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$
 is the thin SVD, then

$$X^T X = V\Sigma^T U^T U\Sigma V^T = V\Sigma^2 V^T$$

if
$$X = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$
 is the thin SVD, then

$$X^T X = V\Sigma^T U^T U\Sigma V^T = V\Sigma^2 V^T$$

normal equations are

$$X^T X w = X^T y$$

if
$$X = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$
 is the thin SVD, then

$$X^T X = V\Sigma^T U^T U\Sigma V^T = V\Sigma^2 V^T$$

normal equations are

$$X^T X w = X^T y$$
$$V \Sigma^2 V^T w = V \Sigma U^T y$$

if
$$X = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$
 is the thin SVD, then

$$X^T X = V\Sigma^T U^T U\Sigma V^T = V\Sigma^2 V^T$$

normal equations are

$$X^{T}Xw = X^{T}y$$
$$V\Sigma^{2}V^{T}w = V\Sigma U^{T}y$$
$$\Sigma^{-2}V^{T}V\Sigma^{2}V^{T}w = \Sigma^{-2}V^{T}V\Sigma U^{T}y$$

if
$$X = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$
 is the thin SVD, then

$$X^T X = V\Sigma^T U^T U\Sigma V^T = V\Sigma^2 V^T$$

normal equations are

$$X^{T}Xw = X^{T}y$$
$$V\Sigma^{2}V^{T}w = V\Sigma U^{T}y$$
$$\Sigma^{-2}V^{T}V\Sigma^{2}V^{T}w = \Sigma^{-2}V^{T}V\Sigma U^{T}y$$
$$V^{T}w = \Sigma^{-1}U^{T}y$$

can't solve (V^T not invertible, solution not unique...)

if
$$X = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$
 is the thin SVD, then

$$X^T X = V\Sigma^T U^T U\Sigma V^T = V\Sigma^2 V^T$$

normal equations are

$$X^{T}Xw = X^{T}y$$
$$V\Sigma^{2}V^{T}w = V\Sigma U^{T}y$$
$$\Sigma^{-2}V^{T}V\Sigma^{2}V^{T}w = \Sigma^{-2}V^{T}V\Sigma U^{T}y$$
$$V^{T}w = \Sigma^{-1}U^{T}y$$

can't solve (V^T not invertible, solution not unique...) guess $w = V \Sigma^{-1} U^T y = \sum_{i=1}^d v_i \sigma_i^{-1} u_i^T y$:

if
$$X = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$
 is the thin SVD, then

$$X^T X = V\Sigma^T U^T U\Sigma V^T = V\Sigma^2 V^T$$

normal equations are

$$X^{T}Xw = X^{T}y$$
$$V\Sigma^{2}V^{T}w = V\Sigma U^{T}y$$
$$\Sigma^{-2}V^{T}V\Sigma^{2}V^{T}w = \Sigma^{-2}V^{T}V\Sigma U^{T}y$$
$$V^{T}w = \Sigma^{-1}U^{T}y$$

can't solve (
$$V^T$$
 not invertible, solution not unique...)
guess $w = V \Sigma^{-1} U^T y = \sum_{i=1}^d v_i \sigma_i^{-1} u_i^T y$:
 $V^T w = V^T V \Sigma^{-1} U^T y = \Sigma^{-1} U^T y$

so we've found a solution (without assuming invertibility)!

Demo: SVD

https://github.com/ORIE4741/demos/SVD.ipynb

Review: methods for least squares

	GD	SGM	Gram GD	Parallel GD	QR or SVD
initial	0	0	nd ²	nd²/P	nd ²
per iter	nd	<i>S</i> <i>d</i>	d^2	d^2	0

(numbers in flops, omitting constants)

- gradient descent (most flexible, O(nd) flops per iteration)
- QR factorization (most efficient exact solution method, O(nd²) flops)
- SVD factorization (exact solution method, works for underdetermined problems, O(nd²) flops)
- backslash command uses either QR or SVD to ensure stability + speed

Outline

The SVD

Non-uniqueness

Quadratic regularization

Poll: uniqueness

Normal equations:

$$X^T X w = X^T y$$

Q: is the solution to the normal equations always unique?

- A. yes
- B. no

Poll: uniqueness

Normal equations:

$$X^T X w = X^T y$$

Q: is the solution to the normal equations always unique?

- A. yes
- B. no

A: no, if $X^T X$ is not invertible, the solution is not unique! if $\operatorname{Rank}(X^T X) < d$, then for some $v \neq 0$, $X^T X v = 0$. so if $X^T X w = X^T y$, then $X^T X (w + \alpha v) = X^T y$ for any $\alpha \in \mathbf{R}$.

Poll: uniqueness

Normal equations:

$$X^T X w = X^T y$$

Q: is the solution to the normal equations always unique?

- A. yes
- B. no

A: no, if $X^T X$ is not invertible, the solution is not unique! if $\operatorname{Rank}(X^T X) < d$, then for some $v \neq 0$, $X^T X v = 0$. so if $X^T X w = X^T y$, then $X^T X (w + \alpha v) = X^T y$ for any $\alpha \in \mathbf{R}$. **Q:** is non-uniqueness a problem for a predictive model?

- A. yes
- B. no

- goal: predict cancer risk from mutations in genes
- X_{ij} is 1 if person i has a mutation in gene j
- genes 1 and 2 vary together: every person with a mutation in gene 1 has one in gene 2, too, and vice versa
- ▶ so the first and second column of X are identical: $X_{1:} = X_{2:}$

$$X_{1:} = X_{2:}$$

suppose our least squares solution is w
 w' = w + αe₁ − αe₂, for α ∈ R, makes the same predictions:

.

$$Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2)$$

= $Xw + \alpha (X_{1:} - X_{2:}) = Xw$

now suppose a new person x arrives with a mutation in gene 1 (x₁ = 1) but not in gene 2 (x₂ = 0).

$$X_{1:} = X_{2:}$$

suppose our least squares solution is w
 w' = w + αe₁ − αe₂, for α ∈ R, makes the same predictions:

$$Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2)$$

= Xw + \alpha(X_{1:} - X_{2:}) = Xw

now suppose a new person x arrives with a mutation in gene 1 (x₁ = 1) but not in gene 2 (x₂ = 0).

Q: do w and w' make the same prediction?

- A. yes
- B. no

$$X_{1:} = X_{2:}$$

suppose our least squares solution is w
 w' = w + αe₁ - αe₂, for α ∈ R, makes the same predictions:

$$Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2)$$

= Xw + \alpha(X_{1:} - X_{2:}) = Xw

now suppose a new person x arrives with a mutation in gene 1 (x₁ = 1) but not in gene 2 (x₂ = 0).

Q: do w and w' make the same prediction?

A. yes

.

B. no

Q: what criteria might you pick to choose a good w?

$$X_{1:} = X_{2:}$$

suppose our least squares solution is w
 w' = w + αe₁ − αe₂, for α ∈ R, makes the same predictions:

$$Xw' = X(w + \alpha e_1 - \alpha e_2) = Xw + \alpha X(e_1 - e_2)$$

= Xw + \alpha(X_{1:} - X_{2:}) = Xw

now suppose a new person x arrives with a mutation in gene 1 (x₁ = 1) but not in gene 2 (x₂ = 0).

Q: do w and w' make the same prediction?

A. yes

B. no

Q: what criteria might you pick to choose a good *w*? **A:** pick a *w* that's small; it will make less crazy predictions

Outline

The SVD

Non-uniqueness

Quadratic regularization

Quadratic regularization

add a small penalty for large coefficients

minimize
$$\|y - Xw\|^2 + \lambda \|w\|^2$$

where $\lambda > 0$ is the **regularization parameter** (also called "regularized least squares", "ridge regression", "Tikhonov regularization", or "weight decay")

why regularize?

- prevent overfitting
- stabilize estimate
- solution is always unique

Solving regularized regression

minimize
$$\|y - Xw\|^2 + \lambda \|w\|^2$$

solve by setting the derivative to 0: optimal w^{ridge} satisfies

$$0 = \nabla^{\text{ridge}} \left(\|y - Xw^{\text{ridge}}\|^2 + \lambda \|w^{\text{ridge}}\|^2 \right)$$
$$= -2X^T y + 2X^T Xw^{\text{ridge}} + 2\lambda w^{\text{ridge}}$$
$$(X^T X + \lambda I)w^{\text{ridge}} = X^T y$$

Poll: is $X^T X + \lambda I$ invertible for $\lambda > 0$?

A. always

B. if λ is larger than the smallest eigenvalue of $X^T X$

C. if X is full rank

D. never

Review: why is $X^T X + \lambda I$ invertible?

let

$$X = U \Sigma V^T$$

be the full SVD

then

$$X^{T}X + \lambda I = V\Sigma U^{T}U\Sigma V^{T} + \lambda I$$

= $V\Sigma^{2}V^{T} + \lambda VV^{T} = V(\Sigma^{2} + \lambda I)V^{T}.$

Review: why is $X^T X + \lambda I$ invertible?

let

$$X = U \Sigma V^T$$

be the full SVD

then

$$\begin{aligned} X^T X + \lambda I &= V \Sigma U^T U \Sigma V^T + \lambda I \\ &= V \Sigma^2 V^T + \lambda V V^T = V (\Sigma^2 + \lambda I) V^T. \end{aligned}$$

• use the fact that for the full SVD, $V^{-1} = V^T$

• and $\Sigma^2 + \lambda I$ is diagonal with strictly positive entries, so invertible

Review: why is $X^T X + \lambda I$ invertible?

let

$$X = U \Sigma V^T$$

be the full SVD

then

$$X^{T}X + \lambda I = V\Sigma U^{T}U\Sigma V^{T} + \lambda I$$

= $V\Sigma^{2}V^{T} + \lambda VV^{T} = V(\Sigma^{2} + \lambda I)V^{T}.$

- use the fact that for the full SVD, $V^{-1} = V^T$
- and $\Sigma^2 + \lambda I$ is diagonal with strictly positive entries, so invertible
- let's compute the inverse:

$$(X^{T}X + \lambda I)^{-1} = (V^{T})^{-1} (\Sigma^{2} + \lambda I)^{-1} V^{-1} = V (\Sigma^{2} + \lambda I)^{-1} V^{T}.$$

Solving regularized regression

minimize
$$\|y - Xw\|^2 + \lambda \|w\|^2$$

> solve by setting the derivative to 0: optimal w^{ridge} satisfies

$$0 = \nabla^{\text{ridge}} \left(\|y - Xw^{\text{ridge}}\|^2 + \lambda \|w^{\text{ridge}}\|^2 \right)$$
$$= -2X^T y + 2X^T Xw^{\text{ridge}} + 2\lambda w^{\text{ridge}}$$
$$(X^T X + \lambda I)w^{\text{ridge}} = X^T y$$

• $X^T X + \lambda I$ is **always** invertible, so

$$w^{\mathsf{ridge}} = (X^{\mathsf{T}}X + \lambda I)^{-1}X^{\mathsf{T}}y$$

Quadratic regularization and the SVD

suppose $X = U\Sigma V^T$ is the (full) SVD of X.

regularized solution is

$$w^{\text{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

= $(V \Sigma U^T U \Sigma V^T + \lambda I)^{-1} V \Sigma U^T y$
= $(V \Sigma^2 V^T + V (\lambda I) V^T)^{-1} V \Sigma U^T y$
= $V (\Sigma^2 + \lambda I)^{-1} V^T V \Sigma U^T y$
= $V (\Sigma^2 + \lambda I)^{-1} \Sigma U^T y$
= $\sum_{i=1}^d v_i \frac{\sigma_i}{\sigma_i^2 + \lambda} u_i^T y$

Quadratic regularization and the SVD

suppose $X = U\Sigma V^T$ is the (full) SVD of X.

regularized solution is

$$w^{\text{ridge}} = (X^T X + \lambda I)^{-1} X^T y$$

= $(V \Sigma U^T U \Sigma V^T + \lambda I)^{-1} V \Sigma U^T y$
= $(V \Sigma^2 V^T + V (\lambda I) V^T)^{-1} V \Sigma U^T y$
= $V (\Sigma^2 + \lambda I)^{-1} V^T V \Sigma U^T y$
= $V (\Sigma^2 + \lambda I)^{-1} \Sigma U^T y$
= $\sum_{i=1}^d v_i \frac{\sigma_i}{\sigma_i^2 + \lambda} u_i^T y$

ridge regression shrinks $\sigma_i^{-1} = \frac{\sigma_i}{\sigma_i^2}$ to $\frac{\sigma_i}{\sigma_i^2 + \lambda}$