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Announcements 10/26/21

I hw4 out, due 10am 11/1
I save slip days for emergencies

I project midterm report due 11:59pm 11/1

I section this week: optimization algorithms for regularized
problems

2 / 35



Announcements 10/28/21

I hw4 out, due 10am 11/1
I save slip days for emergencies
I talk with me if you run out of slip days
I turn in hw early, then have fun on Halloween!

I project midterm report due 11:59pm 11/1
I your peers are grading you; make your report make sense to

them
I look at previous years reports for organizational ideas
I “three techniques from class”: look ahead in the course

topics and/or ask
I look at the peer grading rubric (on projects webpage)
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Regularized empirical risk minimization

choose model by solving

minimize
n∑

i=1

`(xi , yi ;w) + r(w)

with variable w ∈ Rd

I parameter vector w ∈ Rd

I loss function ` : X × Y × Rd → R

I regularizer r : Rd → R

why?

I want to minimize the risk E(x ,y)∼P`(x , y ;w)

I approximate it by the empirical risk
∑n

i=1 `(x , y ;w)

I add regularizer to help model generalize
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Example: regularized least squares

find best model by solving

minimize
n∑

i=1

`(xi , yi ;w) + r(w)

with variable w ∈ Rd

ridge regression, aka quadratically regularized least squares:

I loss function `(x , y ;w) = (y − wT x)2

I regularizer r(w) = ‖w‖2
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Outline

Regularizers

`1 regularizization

ControlBurn: Ensembles + Lasso

Nonnegative regularizer

Quadratic regularizization
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Regularization

why regularize?

I reduce variance of the model

I impose prior structural knowledge

I improve interpretability

why not regularize?

I Gauss-Markov theorem:
least squares is the best linear unbiased estimator

I regularization increases bias

7 / 35



Regularization

why regularize?

I reduce variance of the model

I impose prior structural knowledge

I improve interpretability

why not regularize?

I Gauss-Markov theorem:
least squares is the best linear unbiased estimator

I regularization increases bias

7 / 35



Regularizers: a tour

we might choose regularizer so models will be

I small

I sparse

I nonnegative

I smooth

I . . .

compared with forward- and backward-stepwise selection (e.g.,
AIC, BIC), regularized models tend to have lower variance.

source: Elements of Statistical Learning (Hastie, Tibshirani, Friedman)
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`1 regularization

`1 regularizer

r(w) = λ

n∑
i=1

|wi |

lasso problem

minimize
n∑

i=1

(yi − wT xi )
2 + λ

n∑
i=1

|wi |

with variable w ∈ Rd

I penalizes large w less than quadratic regularization

I no closed form solution
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Recall `p norms

`p norm ‖w‖p for p ∈ (0,∞) is defined as

‖w‖p = (
d∑

i=1

|w |p)1/p

examples:

I `1 norm is ‖w‖1 =
∑d

i=1 |w |

I `2 norm is ‖w‖2 =
√∑d

i=1 w
2

for p = 0 or p =∞, `p norm is defined by taking limit:

I `∞ norm is ‖w‖∞ = limp→∞(
∑d

i=1 |w |p)1/p = maxi |wi |
I `0 norm is ‖w‖0 = limp→0(

∑d
i=1 |w |p)1/p = card(w),

number of nonzeros in w

technical note: `0 is not actually a norm
(not absolutely homogeneous since ‖αw‖0 = ‖w‖0 for α 6= 0)
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`1 regularization

why use `1?

I best convex lower bound for `0 on the `∞ unit ball

I tends to produce sparse solution
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`1 vs `2 regularization

I suppose two features, same up to scaling: X:1 = y , X:2 = y

I fit lasso model and ridge regression model as λ→ 0

w ridge = lim
λ→0

argmin
w

‖y − Xw‖2 + λ‖w‖22

w lasso = lim
λ→0

argmin
w

‖y − Xw‖2 + λ‖w‖1

I as λ→ 0, solution solves least squares =⇒ w1 + w2 = 1

I quadratic regularization minimizes w2
1 + w2

2 =⇒
A. w1 = w2 = 1

2
B. w1 = 1, w2 = 0
C. w1 = 0, w2 = 1

w1 = w2 = 1
2
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`1 vs `2 regularization

I suppose two features, both equal: X:1 = y , X:2 = y

I fit lasso model and ridge regression model as λ→ 0

w ridge = lim
λ→0

argmin
w

‖y − Xw‖2 + λ‖w‖22

w lasso = lim
λ→0

argmin
w

‖y − Xw‖2 + λ‖w‖1

I as λ→ 0, solution solves least squares =⇒ w1 + w2 = 1

I lasso minimizes |w1|+ |w2| =⇒
A. w1 = w2 = 1

2
B. w1 = 1, w2 = 0
C. w1 = 0, w2 = 1

all options are equally good
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`1 vs `2 regularization

I suppose two features, same up to scaling 0 < α < 1:
X:1 = y , X:2 = αy

I fit lasso model and ridge regression model as λ→ 0

w ridge = lim
λ→0

argmin
w

‖y − Xw‖2 + λ‖w‖22

w lasso = lim
λ→0

argmin
w

‖y − Xw‖2 + λ‖w‖1

I as λ→ 0, solution solves least squares =⇒ w1 + αw2 = 1

I lasso minimizes |w1|+ |w2| =⇒
A. w1 = 1/2, w2 = 1/2α
B. w1 = 1, w2 = 0
C. w1 = 0, w2 = 1/α

w1 = 1, w2 = 0
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Sparsity

why would you want sparsity?

I credit card application: requires less info from applicant

I medical diagnosis: easier to explain model to doctor

I genomic study: which genes to investigate?
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Outline

Regularizers

`1 regularizization

ControlBurn: Ensembles + Lasso

Nonnegative regularizer

Quadratic regularizization
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ControlBurn

paper: https://arxiv.org/abs/2107.00219

demo: https://github.com/udellgroup/controlburn/

blob/main/Demo/ControlBurnDemoNotebook.ipynb
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Outline

Regularizers

`1 regularizization

ControlBurn: Ensembles + Lasso

Nonnegative regularizer

Quadratic regularizization
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Convex indicator

define convex indicator 1 : {true, false} → R ∪ {∞}

1(z) =

{
0 z is true
∞ z is false

define convex indicator of set C

1C (x) = 1(x ∈ C ) =

{
0 x ∈ C
∞ otherwise

don’t confuse this with the boolean indicator 1(z)
(no standard notation. . . )
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Nonnegative regularization

nonnegative regularizer

r(w) =
n∑

i=1

1(wi ≥ 0)

nonnegative least squares problem (NNLS)

minimize
n∑

i=1

(yi − wT xi )
2 +

n∑
i=1

1(wi ≥ 0)

with variable w ∈ Rd

I value is ∞ if wi < 0

I so solution is always nonnegative

I often, solution is also sparse
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Nonnegative coefficients

why would you want nonnegativity?

I electricity usage: how often is device turned on?
I n = times, d = electric devices,
I y = usage, X = which devices use power at which times
I w = devices used by household

I hyperspectral imaging: which species are present?
I n = frequencies, d = possible materials,
I y = observed spectrum, X = known spectrum of each

material
I w = material composition of location

I logistics: which routes to run?
I n = locations, d = possible routes,
I y = demand, X = which routes visit which locations
I w = size of truck to send on each route
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Quadratic regularizer

quadratic regularizer

r(w) = λ

n∑
i=1

w2
i

ridge regression

minimize
n∑

i=1

(yi − wT xi )
2 + λ

n∑
i=1

w2
i

with variable w ∈ Rd

solution w = (XTX + λI )−1XT y
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Quadratic regularizer

I shrinks coefficients towards 0

I shrinks more in the direction of the smallest singular values
of X
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Is least squares scaling invariant?

suppose Alice and Bob do the same experiment

I Alice measures distance in mm

I Bob measures distance in km

they each compute an estimator with least squares and compare
their predictions

Q: Do they make the same predictions?

A. yes

B. no

A: Yes!
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Least squares is scaling invariant

if β ∈ R, D ∈ Rd×d is diagonal, and Alice’s measurements
(X ′, y ′) are related to Bob’s (X , y) by

y ′ = βy , X ′ = XD,

then the resulting least squares models are

w = (XTX )−1XT y , w ′ = (X ′TX ′)−1X ′T y ′

and they make the same predictions:

X ′w ′ = X ′(X ′TX ′)−1X ′T y ′ = XD(DTXTXD)−1DTXTβy

= XDD−1(XTX )−1(DT )−1DTXTβy

= βX (XTX )−1XT y = βXw

we say least squares is invariant under scaling
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Is ridge regression scaling invariant?

suppose Alice and Bob do the same experiment

I Alice measures distance in mm

I Bob measures distance in km

they each compute an estimator with ridge regression and
compare their predictions

Q: Do they make the same predictions?

A. yes

B. no

A: No!
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Ridge regression is not scaling invariant

if β ∈ R, D ∈ Rd×d is diagonal, and Alice’s measurements
(X ′, y ′) are related to Bob’s (X , y) by

y ′ = βy , X ′ = XD,

then the resulting ridge regression models are

w = (XTX + λI )−1XT y , w ′ = (X ′TX ′ + λI )−1X ′T y ′

and the predictions are

Xw = X (XTX + λI )−1XT y , X ′w ′ = X ′(X ′TX ′+ λI )−1X ′T y ′

ridge regression is not invariant under coordinate
transformations
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Scaling and offsets

to get the same answer no matter the units of measurement,
standardize the data: for each column of X and of y

I demean: subtract column mean
I standardize: divide by column standard deviation

let

µj =
1

n

n∑
i=1

Xij , µ =
1

n

n∑
i=1

yi

σ2j =
1

n

n∑
i=1

(Xij − µj)2, σ2 =
1

n

n∑
i=1

(yi − µ)2

solve

minimize
n∑

i=1

yi − µ
σ
−

d∑
j=1

wj
Xij − µj
σj

2

+ λ

d∑
j=1

w2
j
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Scale the regularizer, not the data

instead of

minimize
n∑

i=1

yi − µ
σ
−

d∑
j=1

wj
Xij − µi
σi

2

+
d∑

j=1

w2
j ,

I multiply through by σ2

I reparametrize w ′j = σ
σj
wj

to find the equivalent problem

minimize
n∑

i=1

(yi −
d∑

j=1

w ′jXij + c(w ′))2 +
d∑

j=1

σ2j (w ′j )
2,

where c(w ′) is some linear function of w ′

finally absorb c(w ′) into the constant term in the model

minimize ‖y − Xw ′‖2 + λ

d∑
j=1

σ2j (w ′j )
2,
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Scaling and offsets

a different solution to scaling and offsets: take the MAP view

I r(w) is negative log prior on w
I with a gaussian prior,

r(w) =
n∑

i=1

σ2i w
2
i

where 1
σ i

is the variance of the prior on the ith entry of w
I if you believe the noise in the ith features is large, penalize

the ith entry more (σi big);
I if you believe the noise in the ith features is small, penalize

the ith entry less (σi small);
I if you measure X or y in different units,

your prior on w should change accordingly

example: don’t penalize the offset wn of the model (σn →∞)

r(w) =
n−1∑
i=1

w2
i
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Demo: Regularized Regression

https://github.com/ORIE4741/demos/

RegularizedRegression.ipynb
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Smooth coefficients

smooth regularizer

r(w) =
d−1∑
i=1

(wi+1 − wi )
2 = ‖Dw‖2

where D ∈ R(d−1)×d is the first order difference operator

Dij =


1 j = i
−1 j = i + 1
0 else

smoothed least squares problem

minimize
n∑

i=1

(yi − wT xi )
2 + λ‖Dw‖2
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Why smooth?

I allow model to change over space or time
I e.g., different years in tax data

I interpolates between one model and separate models for
different domains
I e.g., counties in tax data

I can couple any pairs of model coefficients, not just (i , i + 1)
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