ORIE 4741: Learning with Big Messy Data

Regularization

Professor Udell
Operations Research and Information Engineering Cornell

October 28, 2021

Announcements 10/26/21

- hw4 out, due 10am 11/1
- save slip days for emergencies
- project midterm report due 11:59pm 11/1
- section this week: optimization algorithms for regularized problems

Announcements 10/28/21

- hw4 out, due 10am 11/1
- save slip days for emergencies
- talk with me if you run out of slip days
- turn in hw early, then have fun on Halloween!
- project midterm report due 11:59pm 11/1
- your peers are grading you; make your report make sense to them
- look at previous years reports for organizational ideas
- "three techniques from class": look ahead in the course topics and/or ask
- look at the peer grading rubric (on projects webpage)

Regularized empirical risk minimization

choose model by solving

$$
\operatorname{minimize} \sum_{i=1}^{n} \ell\left(x_{i}, y_{i} ; w\right)+r(w)
$$

with variable $w \in \mathbf{R}^{d}$

- parameter vector $w \in \mathbf{R}^{d}$
- loss function $\ell: \mathcal{X} \times \mathcal{Y} \times \mathbf{R}^{d} \rightarrow \mathbf{R}$
- regularizer $r: \mathbf{R}^{d} \rightarrow \mathbf{R}$

Regularized empirical risk minimization

choose model by solving

$$
\operatorname{minimize} \sum_{i=1}^{n} \ell\left(x_{i}, y_{i} ; w\right)+r(w)
$$

with variable $w \in \mathbf{R}^{d}$

- parameter vector $w \in \mathbf{R}^{d}$
- loss function $\ell: \mathcal{X} \times \mathcal{Y} \times \mathbf{R}^{d} \rightarrow \mathbf{R}$
\rightarrow regularizer $r: \mathbf{R}^{d} \rightarrow \mathbf{R}$
why?
- want to minimize the risk $\mathbb{E}_{(x, y) \sim p} \ell(x, y ; w)$
- approximate it by the empirical risk $\sum_{i=1}^{n} \ell(x, y ; w)$
- add regularizer to help model generalize

Example: regularized least squares

find best model by solving

$$
\operatorname{minimize} \sum_{i=1}^{n} \ell\left(x_{i}, y_{i} ; w\right)+r(w)
$$

with variable $w \in \mathbf{R}^{d}$
ridge regression, aka quadratically regularized least squares:

- loss function $\ell(x, y ; w)=\left(y-w^{\top} x\right)^{2}$
- regularizer $r(w)=\|w\|^{2}$

Outline

Regularizers
ℓ_{1} regularizization

ControlBurn: Ensembles + Lasso

Nonnegative regularizer

Quadratic regularizization

Regularization

why regularize?

- reduce variance of the model
- impose prior structural knowledge
- improve interpretability

Regularization

why regularize?

- reduce variance of the model
- impose prior structural knowledge
- improve interpretability
why not regularize?
- Gauss-Markov theorem: least squares is the best linear unbiased estimator
- regularization increases bias

Regularizers: a tour

we might choose regularizer so models will be

- small
- sparse
- nonnegative
- smooth

Regularizers: a tour

we might choose regularizer so models will be

- small
- sparse
- nonnegative
- smooth
compared with forward- and backward-stepwise selection (e.g., AIC, BIC), regularized models tend to have lower variance.
source: Elements of Statistical Learning (Hastie, Tibshirani, Friedman)

Outline

Regularizers

ℓ_{1} regularizization

ControlBurn: Ensembles + Lasso

Nonnegative regularizer

Quadratic regularizization

ℓ_{1} regularization

ℓ_{1} regularizer

$$
r(w)=\lambda \sum_{i=1}^{n}\left|w_{i}\right|
$$

ℓ_{1} regularization

ℓ_{1} regularizer

$$
r(w)=\lambda \sum_{i=1}^{n}\left|w_{i}\right|
$$

lasso problem

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(y_{i}-w^{T} x_{i}\right)^{2}+\lambda \sum_{i=1}^{n}\left|w_{i}\right|
$$

with variable $w \in \mathbf{R}^{d}$

ℓ_{1} regularization

ℓ_{1} regularizer

$$
r(w)=\lambda \sum_{i=1}^{n}\left|w_{i}\right|
$$

lasso problem

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}+\lambda \sum_{i=1}^{n}\left|w_{i}\right|
$$

with variable $w \in \mathbf{R}^{d}$

- penalizes large w less than quadratic regularization
- no closed form solution

Recall ℓ_{p} norms

ℓ_{p} norm $\|w\|_{p}$ for $p \in(0, \infty)$ is defined as

$$
\|w\|_{p}=\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}
$$

Recall ℓ_{p} norms

ℓ_{p} norm $\|w\|_{p}$ for $p \in(0, \infty)$ is defined as

$$
\|w\|_{p}=\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}
$$

examples:

Recall ℓ_{p} norms

ℓ_{p} norm $\|w\|_{p}$ for $p \in(0, \infty)$ is defined as

$$
\|w\|_{p}=\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}
$$

examples:

- ℓ_{1} norm is $\|w\|_{1}=\sum_{i=1}^{d}|w|$

Recall ℓ_{p} norms

ℓ_{p} norm $\|w\|_{p}$ for $p \in(0, \infty)$ is defined as

$$
\|w\|_{p}=\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}
$$

examples:

- ℓ_{1} norm is $\|w\|_{1}=\sum_{i=1}^{d}|w|$
- ℓ_{2} norm is $\|w\|_{2}=\sqrt{\sum_{i=1}^{d} w^{2}}$

Recall ℓ_{p} norms

ℓ_{p} norm $\|w\|_{p}$ for $p \in(0, \infty)$ is defined as

$$
\|w\|_{p}=\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}
$$

examples:

- ℓ_{1} norm is $\|w\|_{1}=\sum_{i=1}^{d}|w|$
- ℓ_{2} norm is $\|w\|_{2}=\sqrt{\sum_{i=1}^{d} w^{2}}$
for $p=0$ or $p=\infty, \ell_{p}$ norm is defined by taking limit:

Recall ℓ_{p} norms

ℓ_{p} norm $\|w\|_{p}$ for $p \in(0, \infty)$ is defined as

$$
\|w\|_{p}=\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}
$$

examples:

- ℓ_{1} norm is $\|w\|_{1}=\sum_{i=1}^{d}|w|$
- ℓ_{2} norm is $\|w\|_{2}=\sqrt{\sum_{i=1}^{d} w^{2}}$
for $p=0$ or $p=\infty, \ell_{p}$ norm is defined by taking limit:
- ℓ_{∞} norm is $\|w\|_{\infty}=\lim _{p \rightarrow \infty}\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}=\max _{i}\left|w_{i}\right|$

Recall ℓ_{p} norms

ℓ_{p} norm $\|w\|_{p}$ for $p \in(0, \infty)$ is defined as

$$
\|w\|_{p}=\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}
$$

examples:

- ℓ_{1} norm is $\|w\|_{1}=\sum_{i=1}^{d}|w|$
- ℓ_{2} norm is $\|w\|_{2}=\sqrt{\sum_{i=1}^{d} w^{2}}$
for $p=0$ or $p=\infty, \ell_{p}$ norm is defined by taking limit:
$-\ell_{\infty}$ norm is $\|w\|_{\infty}=\lim _{p \rightarrow \infty}\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}=\max _{i}\left|w_{i}\right|$
- ℓ_{0} norm is $\|w\|_{0}=\lim _{p \rightarrow 0}\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}=\boldsymbol{c a r d}(w)$, number of nonzeros in w

Recall ℓ_{p} norms

ℓ_{p} norm $\|w\|_{p}$ for $p \in(0, \infty)$ is defined as

$$
\|w\|_{p}=\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}
$$

examples:

- ℓ_{1} norm is $\|w\|_{1}=\sum_{i=1}^{d}|w|$
- ℓ_{2} norm is $\|w\|_{2}=\sqrt{\sum_{i=1}^{d} w^{2}}$
for $p=0$ or $p=\infty, \ell_{p}$ norm is defined by taking limit:
$-\ell_{\infty}$ norm is $\|w\|_{\infty}=\lim _{p \rightarrow \infty}\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}=\max _{i}\left|w_{i}\right|$
$-\ell_{0}$ norm is $\|w\|_{0}=\lim _{p \rightarrow 0}\left(\sum_{i=1}^{d}|w|^{p}\right)^{1 / p}=\mathbf{c a r d}(w)$, number of nonzeros in w
technical note: ℓ_{0} is not actually a norm (not absolutely homogeneous since $\|\alpha w\|_{0}=\|w\|_{0}$ for $\alpha \neq 0$)

ℓ_{1} regularization

why use ℓ_{1} ?

- best convex lower bound for ℓ_{0} on the ℓ_{∞} unit ball
- tends to produce sparse solution

ℓ_{1} vs ℓ_{2} regularization

- suppose two features, same up to scaling: $X_{: 1}=y, X_{: 2}=y$
- fit lasso model and ridge regression model as $\lambda \rightarrow 0$

$$
\begin{aligned}
& w^{\text {ridge }}=\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{2}^{2} \\
& w^{\text {lasso }}=\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{1}
\end{aligned}
$$

- as $\lambda \rightarrow 0$, solution solves least squares $\Longrightarrow w_{1}+w_{2}=1$

ℓ_{1} vs ℓ_{2} regularization

- suppose two features, same up to scaling: $X_{: 1}=y, X_{: 2}=y$
- fit lasso model and ridge regression model as $\lambda \rightarrow 0$

$$
\begin{aligned}
w^{\text {ridge }} & =\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{2}^{2} \\
w^{\text {lasso }} & =\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{1}
\end{aligned}
$$

- as $\lambda \rightarrow 0$, solution solves least squares $\Longrightarrow w_{1}+w_{2}=1$
- quadratic regularization minimizes $w_{1}^{2}+w_{2}^{2} \Longrightarrow$
A. $w_{1}=w_{2}=\frac{1}{2}$
B. $w_{1}=1, w_{2}=0$
C. $w_{1}=0, w_{2}=1$

ℓ_{1} vs ℓ_{2} regularization

- suppose two features, same up to scaling: $X_{: 1}=y, X_{: 2}=y$
- fit lasso model and ridge regression model as $\lambda \rightarrow 0$

$$
\begin{aligned}
w^{\text {ridge }} & =\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{2}^{2} \\
w^{\text {lasso }} & =\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{1}
\end{aligned}
$$

- as $\lambda \rightarrow 0$, solution solves least squares $\Longrightarrow w_{1}+w_{2}=1$
- quadratic regularization minimizes $w_{1}^{2}+w_{2}^{2} \Longrightarrow$
A. $w_{1}=w_{2}=\frac{1}{2}$
B. $w_{1}=1, w_{2}=0$
C. $w_{1}=0, w_{2}=1$
$w_{1}=w_{2}=\frac{1}{2}$

ℓ_{1} vs ℓ_{2} regularization

- suppose two features, both equal: $X_{: 1}=y, X_{: 2}=y$
- fit lasso model and ridge regression model as $\lambda \rightarrow 0$

$$
\begin{aligned}
& w^{\text {ridge }}=\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{2}^{2} \\
& w^{\text {lasso }}=\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{1}
\end{aligned}
$$

- as $\lambda \rightarrow 0$, solution solves least squares $\Longrightarrow w_{1}+w_{2}=1$

ℓ_{1} vs ℓ_{2} regularization

- suppose two features, both equal: $X_{: 1}=y, X_{: 2}=y$
- fit lasso model and ridge regression model as $\lambda \rightarrow 0$

$$
\begin{aligned}
& w^{\text {ridge }}=\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{2}^{2} \\
& w^{\text {lasso }}=\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{1}
\end{aligned}
$$

- as $\lambda \rightarrow 0$, solution solves least squares $\Longrightarrow w_{1}+w_{2}=1$
- lasso minimizes $\left|w_{1}\right|+\left|w_{2}\right| \Longrightarrow$
A. $w_{1}=w_{2}=\frac{1}{2}$
B. $w_{1}=1, w_{2}=0$
C. $w_{1}=0, w_{2}=1$

ℓ_{1} vs ℓ_{2} regularization

- suppose two features, both equal: $X_{: 1}=y, X_{: 2}=y$
- fit lasso model and ridge regression model as $\lambda \rightarrow 0$

$$
\begin{aligned}
& w^{\text {ridge }}=\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{2}^{2} \\
& w^{\text {lasso }}=\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{1}
\end{aligned}
$$

- as $\lambda \rightarrow 0$, solution solves least squares $\Longrightarrow w_{1}+w_{2}=1$
- lasso minimizes $\left|w_{1}\right|+\left|w_{2}\right| \Longrightarrow$
A. $w_{1}=w_{2}=\frac{1}{2}$
B. $w_{1}=1, w_{2}=0$
C. $w_{1}=0, w_{2}=1$
all options are equally good

ℓ_{1} vs ℓ_{2} regularization

- suppose two features, same up to scaling $0<\alpha<1$:

$$
X_{: 1}=y, X_{: 2}=\alpha y
$$

- fit lasso model and ridge regression model as $\lambda \rightarrow 0$

$$
\begin{aligned}
w^{\text {ridge }} & =\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{2}^{2} \\
w^{\text {lasso }} & =\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{1}
\end{aligned}
$$

- as $\lambda \rightarrow 0$, solution solves least squares $\Longrightarrow w_{1}+\alpha w_{2}=1$

ℓ_{1} vs ℓ_{2} regularization

- suppose two features, same up to scaling $0<\alpha<1$:

$$
X_{: 1}=y, X_{: 2}=\alpha y
$$

- fit lasso model and ridge regression model as $\lambda \rightarrow 0$

$$
\begin{aligned}
w^{\text {ridge }} & =\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{2}^{2} \\
w^{\text {lasso }} & =\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{1}
\end{aligned}
$$

- as $\lambda \rightarrow 0$, solution solves least squares $\Longrightarrow w_{1}+\alpha w_{2}=1$
- lasso minimizes $\left|w_{1}\right|+\left|w_{2}\right| \Longrightarrow$
A. $w_{1}=1 / 2, w_{2}=1 / 2 \alpha$
B. $w_{1}=1, w_{2}=0$
C. $w_{1}=0, w_{2}=1 / \alpha$

ℓ_{1} vs ℓ_{2} regularization

- suppose two features, same up to scaling $0<\alpha<1$:

$$
X_{: 1}=y, X_{: 2}=\alpha y
$$

- fit lasso model and ridge regression model as $\lambda \rightarrow 0$

$$
\begin{aligned}
w^{\text {ridge }} & =\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{2}^{2} \\
w^{\text {lasso }} & =\lim _{\lambda \rightarrow 0} \underset{w}{\operatorname{argmin}}\|y-X w\|^{2}+\lambda\|w\|_{1}
\end{aligned}
$$

- as $\lambda \rightarrow 0$, solution solves least squares $\Longrightarrow w_{1}+\alpha w_{2}=1$
- lasso minimizes $\left|w_{1}\right|+\left|w_{2}\right| \Longrightarrow$

$$
\begin{aligned}
& \text { A. } w_{1}=1 / 2, w_{2}=1 / 2 \alpha \\
& \text { B. } w_{1}=1, w_{2}=0 \\
& \text { C. } w_{1}=0, w_{2}=1 / \alpha \\
& w_{1}=1, w_{2}=0
\end{aligned}
$$

Sparsity

why would you want sparsity?

- credit card application: requires less info from applicant
- medical diagnosis: easier to explain model to doctor
- genomic study: which genes to investigate?

Outline

Regularizers

ℓ_{1} regularizization

ControlBurn: Ensembles + Lasso

Nonnegative regularizer

Quadratic regularizization

ControlBurn

paper: https://arxiv.org/abs/2107.00219
demo: https://github.com/udellgroup/controlburn/ blob/main/Demo/ControlBurnDemoNotebook.ipynb

Outline

```
Regularizers
\ell1 regularizization
ControlBurn: Ensembles + Lasso
```

Nonnegative regularizer

Quadratic regularizization

Convex indicator

define convex indicator 1 : $\{$ true, false $\} \rightarrow \mathbf{R} \cup\{\infty\}$

$$
\mathbf{1}(z)= \begin{cases}0 & z \text { is true } \\ \infty & z \text { is false }\end{cases}
$$

define convex indicator of set C

$$
\mathbf{1}_{C}(x)=\mathbf{1}(x \in C)= \begin{cases}0 & x \in C \\ \infty & \text { otherwise }\end{cases}
$$

Convex indicator

define convex indicator $1:\{$ true, false $\} \rightarrow \mathbf{R} \cup\{\infty\}$

$$
\mathbf{1}(z)= \begin{cases}0 & z \text { is true } \\ \infty & z \text { is false }\end{cases}
$$

define convex indicator of set C

$$
\mathbf{1}_{C}(x)=\mathbf{1}(x \in C)= \begin{cases}0 & x \in C \\ \infty & \text { otherwise }\end{cases}
$$

don't confuse this with the boolean indicator $\mathbb{1}(z)$ (no standard notation...)

Nonnegative regularization

nonnegative regularizer

$$
r(w)=\sum_{i=1}^{n} \mathbf{1}\left(w_{i} \geq 0\right)
$$

nonnegative least squares problem (NNLS)

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(y_{i}-w^{T} x_{i}\right)^{2}+\sum_{i=1}^{n} \mathbf{1}\left(w_{i} \geq 0\right)
$$

with variable $w \in \mathbf{R}^{d}$

- value is ∞ if $w_{i}<0$
- so solution is always nonnegative
- often, solution is also sparse

Nonnegative coefficients

why would you want nonnegativity?

Nonnegative coefficients

why would you want nonnegativity?

- electricity usage: how often is device turned on?
- $\mathrm{n}=$ times, $\mathrm{d}=$ electric devices,
- $\mathrm{y}=$ usage, $\mathrm{X}=$ which devices use power at which times
- $\mathrm{w}=$ devices used by household

Nonnegative coefficients

why would you want nonnegativity?

- electricity usage: how often is device turned on?
- $\mathrm{n}=$ times, $\mathrm{d}=$ electric devices,
- $\mathrm{y}=$ usage, $\mathrm{X}=$ which devices use power at which times
- $\mathrm{w}=$ devices used by household
- hyperspectral imaging: which species are present?
- $\mathrm{n}=$ frequencies, $\mathrm{d}=$ possible materials,
- $\mathrm{y}=$ observed spectrum, $\mathrm{X}=$ known spectrum of each material
- $\mathrm{w}=$ material composition of location

Nonnegative coefficients

why would you want nonnegativity?

- electricity usage: how often is device turned on?
- $\mathrm{n}=$ times, $\mathrm{d}=$ electric devices,
- $\mathrm{y}=$ usage, $\mathrm{X}=$ which devices use power at which times
- $\mathrm{w}=$ devices used by household
- hyperspectral imaging: which species are present?
- $\mathrm{n}=$ frequencies, $\mathrm{d}=$ possible materials,
- $\mathrm{y}=$ observed spectrum, $\mathrm{X}=$ known spectrum of each material
- $\mathrm{w}=$ material composition of location
- logistics: which routes to run?
- $\mathrm{n}=$ locations, $\mathrm{d}=$ possible routes,
- $\mathrm{y}=$ demand, $\mathrm{X}=$ which routes visit which locations
- $\mathrm{w}=$ size of truck to send on each route

Outline

Regularizers

ℓ_{1} regularizization

ControlBurn: Ensembles + Lasso

Nonnegative regularizer

Quadratic regularizization

Quadratic regularizer

quadratic regularizer

$$
r(w)=\lambda \sum_{i=1}^{n} w_{i}^{2}
$$

ridge regression

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(y_{i}-w^{\top} x_{i}\right)^{2}+\lambda \sum_{i=1}^{n} w_{i}^{2}
$$

with variable $w \in \mathbf{R}^{d}$
solution $w=\left(X^{T} X+\lambda I\right)^{-1} X^{T} y$

Quadratic regularizer

- shrinks coefficients towards 0
- shrinks more in the direction of the smallest singular values of X

Is least squares scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km
they each compute an estimator with least squares and compare their predictions

Is least squares scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km
they each compute an estimator with least squares and compare their predictions

Q: Do they make the same predictions?
A. yes
B. no

Is least squares scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km
they each compute an estimator with least squares and compare their predictions
Q: Do they make the same predictions?
A. yes
B. no

A: Yes!

Least squares is scaling invariant

if $\beta \in \mathbf{R}, D \in \mathbf{R}^{d \times d}$ is diagonal, and Alice's measurements (X^{\prime}, y^{\prime}) are related to Bob's (X, y) by

$$
y^{\prime}=\beta y, \quad X^{\prime}=X D
$$

then the resulting least squares models are

$$
w=\left(X^{T} X\right)^{-1} X^{T} y, \quad w^{\prime}=\left(X^{\prime T} X^{\prime}\right)^{-1} X^{\prime T} y^{\prime}
$$

and they make the same predictions:

$$
\begin{aligned}
X^{\prime} w^{\prime} & =X^{\prime}\left(X^{\prime T} X^{\prime}\right)^{-1} X^{\prime T} y^{\prime}=X D\left(D^{T} X^{T} X D\right)^{-1} D^{T} X^{T} \beta y \\
& =X D D^{-1}\left(X^{T} X\right)^{-1}\left(D^{T}\right)^{-1} D^{T} X^{T} \beta y \\
& =\beta X\left(X^{T} X\right)^{-1} X^{T} y=\beta X w
\end{aligned}
$$

Least squares is scaling invariant

if $\beta \in \mathbf{R}, D \in \mathbf{R}^{d \times d}$ is diagonal, and Alice's measurements (X^{\prime}, y^{\prime}) are related to Bob's (X, y) by

$$
y^{\prime}=\beta y, \quad X^{\prime}=X D
$$

then the resulting least squares models are

$$
w=\left(X^{T} X\right)^{-1} X^{T} y, \quad w^{\prime}=\left(X^{\prime T} X^{\prime}\right)^{-1} X^{\prime T} y^{\prime}
$$

and they make the same predictions:

$$
\begin{aligned}
X^{\prime} w^{\prime} & =X^{\prime}\left(X^{\prime T} X^{\prime}\right)^{-1} X^{\prime T} y^{\prime}=X D\left(D^{T} X^{T} X D\right)^{-1} D^{T} X^{T} \beta y \\
& =X D D^{-1}\left(X^{T} X\right)^{-1}\left(D^{T}\right)^{-1} D^{T} X^{T} \beta y \\
& =\beta X\left(X^{T} X\right)^{-1} X^{T} y=\beta X w
\end{aligned}
$$

we say least squares is invariant under scaling

Is ridge regression scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km
they each compute an estimator with ridge regression and compare their predictions

Is ridge regression scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km
they each compute an estimator with ridge regression and compare their predictions

Q: Do they make the same predictions?
A. yes
B. no

Is ridge regression scaling invariant?

suppose Alice and Bob do the same experiment

- Alice measures distance in mm
- Bob measures distance in km
they each compute an estimator with ridge regression and compare their predictions

Q: Do they make the same predictions?
A. yes
B. no

A: No!

Ridge regression is not scaling invariant

if $\beta \in \mathbf{R}, D \in \mathbf{R}^{d \times d}$ is diagonal, and Alice's measurements (X^{\prime}, y^{\prime}) are related to Bob's (X, y) by

$$
y^{\prime}=\beta y, \quad X^{\prime}=X D
$$

then the resulting ridge regression models are

$$
w=\left(X^{T} X+\lambda I\right)^{-1} X^{T} y, \quad w^{\prime}=\left(X^{\prime T} X^{\prime}+\lambda I\right)^{-1} X^{\prime T} y^{\prime}
$$

and the predictions are
$X w=X\left(X^{T} X+\lambda I\right)^{-1} X^{T} y, \quad X^{\prime} w^{\prime}=X^{\prime}\left(X^{\prime T} X^{\prime}+\lambda I\right)^{-1} X^{\prime T} y^{\prime}$
ridge regression is not invariant under coordinate transformations

Scaling and offsets

to get the same answer no matter the units of measurement, standardize the data: for each column of X and of y

- demean: subtract column mean
- standardize: divide by column standard deviation
let

$$
\begin{aligned}
\mu_{j}=\frac{1}{n} \sum_{i=1}^{n} X_{i j}, & \mu=\frac{1}{n} \sum_{i=1}^{n} y_{i} \\
\sigma_{j}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i j}-\mu_{j}\right)^{2}, & \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}
\end{aligned}
$$

solve
$\operatorname{minimize} \sum_{i=1}^{n}\left(\frac{y_{i}-\mu}{\sigma}-\sum_{j=1}^{d} w_{j} \frac{X_{i j}-\mu_{j}}{\sigma_{j}}\right)^{2}+\lambda \sum_{j=1}^{d} w_{j}^{2}$

Scale the regularizer, not the data

instead of

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(\frac{y_{i}-\mu}{\sigma}-\sum_{j=1}^{d} w_{j} \frac{X_{i j}-\mu_{i}}{\sigma_{i}}\right)^{2}+\sum_{j=1}^{d} w_{j}^{2},
$$

- multiply through by σ^{2}
- reparametrize $w_{j}^{\prime}=\frac{\sigma}{\sigma_{j}} w_{j}$
to find the equivalent problem

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{d} w_{j}^{\prime} X_{i j}+c\left(w^{\prime}\right)\right)^{2}+\sum_{j=1}^{d} \sigma_{j}^{2}\left(w_{j}^{\prime}\right)^{2}
$$

where $c\left(w^{\prime}\right)$ is some linear function of w^{\prime} finally absorb $c\left(w^{\prime}\right)$ into the constant term in the model

$$
\text { minimize }\left\|y-X w^{\prime}\right\|^{2}+\lambda \sum_{j=1}^{d} \sigma_{j}^{2}\left(w_{j}^{\prime}\right)^{2}
$$

Scaling and offsets

a different solution to scaling and offsets: take the MAP view

- $r(w)$ is negative log prior on w
- with a gaussian prior,

$$
r(w)=\sum_{i=1}^{n} \sigma_{i}^{2} w_{i}^{2}
$$

where $\frac{1}{\sigma} ;$ is the variance of the prior on the ith entry of w

- if you believe the noise in the ith features is large, penalize the i th entry more ($\sigma_{i} \mathrm{big}$);
- if you believe the noise in the ith features is small, penalize the i th entry less (σ_{i} small);
- if you measure X or y in different units, your prior on w should change accordingly

Scaling and offsets

a different solution to scaling and offsets: take the MAP view

- $r(w)$ is negative log prior on w
- with a gaussian prior,

$$
r(w)=\sum_{i=1}^{n} \sigma_{i}^{2} w_{i}^{2}
$$

where $\frac{1}{\sigma} ;$ is the variance of the prior on the ith entry of w

- if you believe the noise in the ith features is large, penalize the i th entry more ($\sigma_{i} \mathrm{big}$);
- if you believe the noise in the ith features is small, penalize the i th entry less (σ_{i} small);
- if you measure X or y in different units, your prior on w should change accordingly
example: don't penalize the offset w_{n} of the model $\left(\sigma_{n} \rightarrow \infty\right)$

$$
r(w)=\sum^{n-1} w_{i}^{2}
$$

Demo: Regularized Regression

https://github.com/ORIE4741/demos/
RegularizedRegression.ipynb

Smooth coefficients

smooth regularizer

$$
r(w)=\sum_{i=1}^{d-1}\left(w_{i+1}-w_{i}\right)^{2}=\|D w\|^{2}
$$

where $D \in \mathbf{R}^{(d-1) \times d}$ is the first order difference operator

$$
D_{i j}= \begin{cases}1 & j=i \\ -1 & j=i+1 \\ 0 & \text { else }\end{cases}
$$

smoothed least squares problem

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(y_{i}-w^{T} x_{i}\right)^{2}+\lambda\|D w\|^{2}
$$

Why smooth?

- allow model to change over space or time
- e.g., different years in tax data
- interpolates between one model and separate models for different domains
- e.g., counties in tax data
- can couple any pairs of model coefficients, not just $(i, i+1)$

