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Announcements 10/26/21

» hw4 out, due 10am 11/1
P save slip days for emergencies

» project midterm report due 11:59pm 11/1

» section this week: optimization algorithms for regularized
problems
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Announcements 10/28/21

» hw4 out, due 10am 11/1
P save slip days for emergencies
» talk with me if you run out of slip days
» turn in hw early, then have fun on Halloween!
» project midterm report due 11:59pm 11/1
» your peers are grading you; make your report make sense to
them

P look at previous years reports for organizational ideas
» “three techniques from class”: look ahead in the course
topics and/or ask

> look at the peer grading rubric (on projects webpage)
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Regularized empirical risk minimization

choose model by solving
n
minimize Zf(xi,y,-; w) + r(w)
i=1
with variable w € R?

» parameter vector w € R
» loss function /: X x Y x RY = R
> regularizer r : R —» R
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Regularized empirical risk minimization

choose model by solving

minimize Zf(xia)/i; w) + r(w)
i=1

with variable w € R?

» parameter vector w € R
» loss function /: X x Y x RY = R
> regularizer r : R —» R

why?
> want to minimize the risk E(, ,).pl(x,y; w)
> approximate it by the empirical risk Y7, (x,y; w)

» add regularizer to help model generalize
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Example: regularized least squares

find best model by solving

n
minimize Zﬂ(xi,y,-; w) + r(w)
i=1
with variable w € R?
ridge regression, aka quadratically regularized least squares:
> loss function £(x,y; w) = (y — w'x)?

» regularizer r(w) = HWH2
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Outline

Regularizers
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Regularization

why regularize?

» reduce variance of the model
» impose prior structural knowledge

» improve interpretability
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Regularization

why regularize?

\4

reduce variance of the model

v

impose prior structural knowledge

» improve interpretability
why not regularize?

» Gauss-Markov theorem:
least squares is the best linear unbiased estimator

» regularization increases bias
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Regularizers: a tour

we might choose regularizer so models will be

>

vVvyyVvYyy

small
sparse
nonnegative

smooth
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Regularizers: a tour

we might choose regularizer so models will be

» small
» sparse
» nonnegative
» smooth

| 2

compared with forward- and backward-stepwise selection (e.g.,
AIC, BIC), regularized models tend to have lower variance.

source: Elements of Statistical Learning (Hastie, Tibshirani, Friedman)
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Outline

{1 regularizization
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/1 regularization

{1 regularizer

r(w) =2 |wl
i=1
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(1 regularization

{1 regularizer
n
r(w) =AY |wil
i=1

lasso problem

n

n
minimize Z(yi —w’x)® + )\Z |wil
i=1

i=1

with variable w € R?
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/1 regularization

{1 regularizer
n
r(w) =X |wl
i=1

lasso problem

n n
minimize Z(yi —w’x)® + )\Z |wil
i=1 i=1
with variable w € R?

» penalizes large w less than quadratic regularization

» no closed form solution
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Recall /, norms

£y norm |lw||, for p € (0,00) is defined as

d

wllp = IwlP)V/?

i=1
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Recall /, norms

£y norm |lw||, for p € (0,00) is defined as

d

wllp = IwlP)V/?

i=1
examples:
> (1 norm s [lwlls = 20 |wl
>l norm is [|wlly = /30, w2
for p=0 or p = 00, £, norm is defined by taking limit:

> loo norm is ||wleo = limpeo(3290; |w|P)/P = max; |w;]
> (o norm is ||wllo = limp_o(32; [w[P)V/P = card(w),
number of nonzeros in w
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Recall /, norms

£y norm |lw||, for p € (0,00) is defined as

d
wllp = IwlP)V/?
i=1

examples:

» /1 normis |wl; = 27:1 lw

>l norm is [|wlly = /30, w2

for p=0 or p = 00, £, norm is defined by taking limit:

> loo norm is ||wleo = limpeo(3290; |w|P)/P = max; |w;]
> (o norm is ||wllo = limp_o(32; [w[P)V/P = card(w),
number of nonzeros in w

technical note: ¢ is not actually a norm
(not absolutely homogeneous since ||aw||o = ||w||o for o # 0)
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/1 regularization

why use ¢17

» best convex lower bound for /3 on the £o, unit ball

» tends to produce sparse solution
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(1 vs {5 regularization

» suppose two features, same up to scaling: X1 =y, Xo =y

» fit lasso model and ridge regression model as A — 0

w'dee  —  |im argmin ||y — Xw|> + A||w]|3
A—=0 w

w®°  —  |im argmin ||y — XW”2 + )\HWHI
A—0 w

» as A — 0, solution solves least squares =— w; + wp =1
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(1 vs {5 regularization

» suppose two features, same up to scaling: X1 =y, Xo =y

» fit lasso model and ridge regression model as A — 0

widEe = fim axgmin|ly — Xw|2 + X w3
w

Wlasso = lim argminHy—XW”2+)\HWH1
A—0 w

» as A — 0, solution solves least squares =— w; + wp =1

» quadratic regularization minimizes w? + wi =
A. W1 = Wr = %

B. wip = 1, Wy = 0

C. wp = 0, Wy = 1

1
Wy = w2 =35
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(1 vs {5 regularization

» suppose two features, both equal: X1 =y, Xo =y

» fit lasso model and ridge regression model as A — 0

w'dee  —  |im argmin ||y — Xw|]> + A||w/|3
A—0 w
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(1 vs {5 regularization

» suppose two features, both equal: X1 =y, Xo =y
» fit lasso model and ridge regression model as A — 0
ridge __ : : 2 2
% = lim argmin ||y — Xw||* + \||w]|5

A—0 w

w°  —  |im argmin Hy — XWH2 + )\HWHI
A—0 w

» as A — 0, solution solves least squares — w; +wp =1
> lasso minimizes |w| + |wo| =

A wp=wy =3
B. W1:1,W2:0
C. W1:0,W2:1
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v

(1 vs {5 regularization

suppose two features, both equal: X1 =y, Xo =y

fit lasso model and ridge regression model as A — 0

w'dee  —  |im argmin ||y — Xw|]> + A||w/|3
A—0 w

w°  —  |im argmin Hy — XWH2 + )\HWHI
A—0 w

as A — 0, solution solves least squares — w; + wr =1

lasso minimizes |wq| + [wo| =
A wi=w = %
B. wp = 1, Wy = 0

C. W1:0, W2:1

all options are equally good
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(1 vs {5 regularization

» suppose two features, same up to scaling 0 < o < 1:
X1=y, Xa=ay
» fit lasso model and ridge regression model as A — 0
ridge __ . : 2 2
w = lim argmin [y — Xw||* + A[|w]|5
A—0 w
Wlasso

lim argmin ||y — Xw/|> + A||w||1
A—0 w

» as A — 0, solution solves least squares = wy +aw, =1
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(1 vs {5 regularization

» suppose two features, same up to scaling 0 < o < 1:
X1=y, Xo=ay

» fit lasso model and ridge regression model as A — 0

w'dee  —  |im argmin ||y — Xw||> + A||w]|3
A—=0 w

w2 —  im argmin ||y — XW”2 + Alwll1
A—0 w

» as A — 0, solution solves least squares = wy +aw, =1
> lasso minimizes |wi| + [wo| =

A wp =1/2, wp =1/2a

B. wp = 1, Wy = 0

Cwm=0wm=1/a
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(1 vs {5 regularization

suppose two features, same up to scaling 0 < a < 1:
X1=y, Xo=ay

fit lasso model and ridge regression model as A — 0

w'dee  —  |im argmin ||y — Xw||> + A||w]|3
A—=0 w

w3 = |im argmin ||y — Xw/||? + \|w/1
A—0 w
as A — 0, solution solves least squares =— wy; + awp, =1
lasso minimizes |wi| + |wo| =
A wp =1/2, wp =1/2a

B. W1:1, W2:O
Cwm=0wm=1/a

wi=1 w =0
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Sparsity

why would you want sparsity?

» credit card application: requires less info from applicant
» medical diagnosis: easier to explain model to doctor

» genomic study: which genes to investigate?
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Outline

ControlBurn: Ensembles + Lasso
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ControlBurn

paper: https://arxiv.org/abs/2107.00219

demo: https://github.com/udellgroup/controlburn/
blob/main/Demo/ControlBurnDemoNotebook. ipynb
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Outline

Nonnegative regularizer
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Convex indicator

define convex indicator 1 : {true,false} — RU {oc}

1() = { 0 zistrue

oo z is false

define convex indicator of set C

0 xecC
oo otherwise

le(x)=1(x € C) = {
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Convex indicator

define convex indicator 1 : {true,false} — RU {oc}

1() = { 0 zistrue

oo z is false

define convex indicator of set C

0 xecC
leb) =10 € €) = { oo otherwise
don’t confuse this with the boolean indicator 1(z)
(no standard notation. . .)

20/35



Nonnegative regularization

nonnegative regularizer
n
r(w) =Y _1(w; >0)
i=1

nonnegative least squares problem (NNLS)

minimize Z(y,- —w'x)?+ Z 1(w; >0)

i=1 i=1
with variable w € R?

» value is oo if w; < 0
» so solution is always nonnegative

» often, solution is also sparse
21/35



Nonnegative coefficients

why would you want nonnegativity?
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Nonnegative coefficients

why would you want nonnegativity?

» electricity usage: how often is device turned on?
P> n = times, d = electric devices,
P> y = usage, X = which devices use power at which times
» w = devices used by household
» hyperspectral imaging: which species are present?
» n = frequencies, d = possible materials,
P> y = observed spectrum, X = known spectrum of each
material
» w = material composition of location
» logistics: which routes to run?
» n = locations, d = possible routes,
» y = demand, X = which routes visit which locations
> w = size of truck to send on each route

22/35



Outline

Quadratic regularizization
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Quadratic regularizer

quadratic regularizer
n
r(w) =X Z w?
i=1

ridge regression

n

n
minimize Z(y; —w'x)?+ )\Z w?
i=1

i=1

with variable w € R?
solution w = (XTX + A)71X Ty
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Quadratic regularizer

» shrinks coefficients towards 0

» shrinks more in the direction of the smallest singular values
of X
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Is least squares scaling invariant?

suppose Alice and Bob do the same experiment

» Alice measures distance in mm

» Bob measures distance in km

they each compute an estimator with least squares and compare
their predictions
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Is least squares scaling invariant?

suppose Alice and Bob do the same experiment

» Alice measures distance in mm

» Bob measures distance in km

they each compute an estimator with least squares and compare
their predictions

Q: Do they make the same predictions?

A. yes

B. no

A: Yes!
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Least squares is scaling invariant

if 3R, D € R¥ is diagonal, and Alice’s measurements
(X', y’) are related to Bob's (X, y) by

y'=By, X =XD,
then the resulting least squares models are
w=(XTX)"XTy, w=XTX)XTy
and they make the same predictions:

X/W/ — X/(x/Txl)flxlTy/ — XD(DTXTXD)ilDTXTﬁy
= XDD Y XTX)"Y{(DT)"I1DTXTpy
= BX(XTX)IXTy = pXw
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Least squares is scaling invariant

if 3R, D € R¥ is diagonal, and Alice’s measurements
(X', y’) are related to Bob's (X, y) by

y'=By, X =XD,
then the resulting least squares models are
w=(XTX)"XTy, w=XTX)XTy
and they make the same predictions:

X/W/ — X/(x/Txl)flxlTy/ — XD(DTXTXD)ilDTXTﬁy
= XDD Y XTX)"Y{(DT)"I1DTXTpy
= BX(XTX)IXTy = pXw

we say least squares is invariant under scaling
27/35



Is ridge regression scaling invariant?

suppose Alice and Bob do the same experiment

» Alice measures distance in mm

» Bob measures distance in km

they each compute an estimator with ridge regression and
compare their predictions
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Ridge regression is not scaling invariant

if 3R, D € R¥ is diagonal, and Alice’s measurements
(X', y’) are related to Bob's (X, y) by

y'=By, X =XD,
then the resulting ridge regression models are
w=(X"X+X)XTy, w=XTX +X)IXTy
and the predictions are

Xw=XXTX+A)IXTy, X'w =X (XTX + X)Xy

ridge regression is not invariant under coordinate
transformations
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Scaling and offsets

to get the same answer no matter the units of measurement,
standardize the data: for each column of X and of y

» demean: subtract column mean
» standardize: divide by column standard deviation

let
1o 1o
szﬁzxijy M:;Z}G
i=1 i=1
1 < 1«
2 2 2 2
Uj:;Z(XU_MJ)> g :;Z(YI—M)
i=1 i=1
solve
n L d X — 11: 2 d
minimize Z Yi > o WJ-UT'UJ + )\Z sz
i=1 j=1 J J=1
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Scale the regularizer, not the data

instead of
n Vi — i d X [ 2 d
L. i — iy Mi 2
minimize — wWj——— + wi
2T w >
i=1 Jj=1 Jj=1
» multiply through by o2
. .
> reparametrize w; = o Wi
to find the equivalent problem
n d d
minimize Z(y,- — Z wi Xij + c(w'))* + Zaf(wj)z,
i=1 j=1 j=1

where c(w’) is some linear function of w’

finally absorb c(w’) into the constant term in the model

d
minimize |y — XWIH2 + )\Z 0-]'2(‘/‘/_/{)2’

i=1 31/35



Scaling and offsets

a different solution to scaling and offsets: take the MAP view

4
>

r(w) is negative log prior on w
with a gaussian prior,

n
r(w) = Z o?w?
i=1

where %,. is the variance of the prior on the ith entry of w

if you believe the noise in the ith features is large, penalize
the ith entry more (o; big);

if you believe the noise in the ith features is small, penalize
the ith entry less (o; small);

if you measure X or y in different units,

your prior on w should change accordingly
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Scaling and offsets

a different solution to scaling and offsets: take the MAP view

» r(w) is negative log prior on w
» with a gaussian prior,

n
r(w) = Z o?w?
i=1

where %,. is the variance of the prior on the ith entry of w
» if you believe the noise in the ith features is large, penalize
the ith entry more (o; big);
» if you believe the noise in the ith features is small, penalize
the ith entry less (o; small);
» if you measure X or y in different units,
your prior on w should change accordingly

example: don't penalize the offset w,, of the model (o, — o0)

n—1
r(W) :ZW’? 32/35



Demo: Regularized Regression

https://github.com/0RIE4741/demos/
RegularizedRegression.ipynb
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Smooth coefficients

smooth regularizer

d—1

r(w) = > (wips — wi)? = || Dw|]?

i=1

where D € R(9=1)%9 s the first order difference operator

1 j=i
Dj = -1 j=i+1
0 else

smoothed least squares problem

n
minimize Z(YI —w'x)? + \|Dw|?
i—1
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Why smooth?

» allow model to change over space or time
> e.g., different years in tax data

» interpolates between one model and separate models for
different domains

» e.g., counties in tax data

> can couple any pairs of model coefficients, not just (/,/+ 1)
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