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Announcements

I If you’re taking lecture async: remember to submit
participation post after each class. (Note: answer polling
questions on the async form; no need to pay for iClicker if
you’ll always be async.)

I Sections start next Tuesday. They are optional, attend any
one you prefer. Section next week is a Python + Jupyter
refresher https://github.com/ORIE4741/section

I Office hours: links or locations and times are posted on
course website.

I hw1 will be posted this afternoon, due in two weeks at
9:10am.

I First quiz this week! It should occupy about 20 minutes;
you’ll have up to half an hour to complete it. Start it
anytime between 10am Friday and noon Saturday.

I Start finding project teams. . .
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Collaboration policy

homework: yes, you may work with other students!

I Give credit to the people who have helped you: write on
your homework the names of the people you worked with.

I Give credit to the other resources that have helped you:
please write on your homework the textbooks, notes, or web
pages you found useful.

I write up your homework by yourself. That is, all of the text
that you submit should be typed or hand-written by you.

quizzes: no, you may not work with other students!

I you may consult your notes, lecture slides, and anything on
the internet

I do not talk to other students about the quiz (until after
1pm Saturday)
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IP policy

coursehero or other course note websites:

I do not post any course materials there. this makes the next
rendition of the course worse for everyone.

I please report to me any course materials you find online
(not on our websites).
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Poll

HW0 took me

A. <1 hr

B. 1–5 hrs

C. 5–10 hrs

D. more
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A simple classifier: the perceptron

classification problem: e.g., credit card approval

I X = Rd , Y = {−1,+1}
I data D = {(x1, y1), . . . , (xn, yn)}, xi ∈ X , yi ∈ Y for each

i = 1, . . . , n
I for picture: X = R2, Y = {red, blue}
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Linear classification

I X = Rd , Y = {−1,+1}
I data D = {(x1, y1), . . . , (xn, yn)}, xi ∈ X , yi ∈ Y for each

i = 1, . . . , n

make decision using a linear function

I approve credit if

d∑
j=1

wjxj = w>x ≥ b;

deny otherwise.

I parametrized by weights w ∈ Rd

I decision boundary is the hyperplane {x : w>x = b}
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Feature transformation

simplify notation: remove the offset b using a feature
transformation

example: approve credit if

w>x ≥ b

eg, X = R, w = 1, b = 2 (picture)

Q: Can we represent this decision rule by another with no offset?
A: Projective transformation (picture)

I let x̃ = (1, x), w̃ = (−b,w)

I then w̃>x̃ = w>x − b

now rename x̃ and w̃ as x and w

8 / 29



Feature transformation

simplify notation: remove the offset b using a feature
transformation

example: approve credit if

w>x ≥ b

eg, X = R, w = 1, b = 2 (picture)

Q: Can we represent this decision rule by another with no offset?
A: Projective transformation (picture)

I let x̃ = (1, x), w̃ = (−b,w)

I then w̃>x̃ = w>x − b

now rename x̃ and w̃ as x and w

8 / 29



Feature transformation

simplify notation: remove the offset b using a feature
transformation

example: approve credit if

w>x ≥ b

eg, X = R, w = 1, b = 2 (picture)

Q: Can we represent this decision rule by another with no offset?

A: Projective transformation (picture)

I let x̃ = (1, x), w̃ = (−b,w)

I then w̃>x̃ = w>x − b

now rename x̃ and w̃ as x and w

8 / 29



Feature transformation

simplify notation: remove the offset b using a feature
transformation

example: approve credit if

w>x ≥ b

eg, X = R, w = 1, b = 2 (picture)

Q: Can we represent this decision rule by another with no offset?
A: Projective transformation (picture)

I let x̃ = (1, x), w̃ = (−b,w)

I then w̃>x̃ = w>x − b

now rename x̃ and w̃ as x and w

8 / 29



Feature transformation

simplify notation: remove the offset b using a feature
transformation

example: approve credit if

w>x ≥ b

eg, X = R, w = 1, b = 2 (picture)

Q: Can we represent this decision rule by another with no offset?
A: Projective transformation (picture)

I let x̃ = (1, x), w̃ = (−b,w)

I then w̃>x̃ = w>x − b

now rename x̃ and w̃ as x and w

8 / 29



Feature transformation

simplify notation: remove the offset b using a feature
transformation

example: approve credit if

w>x ≥ b

eg, X = R, w = 1, b = 2 (picture)

Q: Can we represent this decision rule by another with no offset?
A: Projective transformation (picture)

I let x̃ = (1, x), w̃ = (−b,w)

I then w̃>x̃ = w>x − b

now rename x̃ and w̃ as x and w

8 / 29



Geometry of classification

I X = Rd , Y = {−1,+1}
I data D = {(x1, y1), . . . , (xn, yn)}, xi ∈ X , yi ∈ Y for each

i = 1, . . . , n

I approve credit if w>x ≥ 0; deny otherwise.

if ‖w‖ = 1, inner product w>x measures distance of x to
classification boundary

I define θ to be angle between x and w

I geometry: distance from x to boundary is ‖x‖ cos(θ)

I definition of inner product:

w>x = ‖w‖‖x‖ cos(θ) = ‖x‖ cos(θ)

since ‖w‖ = 1
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Linear classification

I X = Rd , Y = {−1,+1}
I data D = {(x1, y1), . . . , (xn, yn)}, xi ∈ X , yi ∈ Y for each

i = 1, . . . , n

make decision using a linear function h : X → Y

h(x) = sign(w>x)

Definition

The sign function is defined as

sign(z) =


1 z > 0
0 z = 0
−1 z < 0

10 / 29



Linear classification

I X = Rd , Y = {−1,+1}
I data D = {(x1, y1), . . . , (xn, yn)}

make decision using a linear function h : X → Y

h(x) = sign(w>x)

Definition

The hypothesis set H is the set of candidate functions might
we choose to map X to Y.

Here, H = {h : X → Y | h(x) = sign(w>x)}
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Poll

Is this function h : R2 → R a linear classifier?

h(x) = sign(x1 − 5x2 − 17) =


1 x1 − 5x2 > 17
0 x1 − 5x2 = 17
−1 x1 − 5x2 < 17

A. Yes

B. No
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Poll

Is this function h : R2 → R a linear classifier?

h(x) = sign(x21 − 2x2 + 27)

A. Yes

B. No
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The perceptron learning rule

how to learn h(x) = sign(w>x) so that h(xi ) ≈ yi?

Frank Rosenblatt’s Mark I Per-
ceptron machine was the first
implementation of the percep-
tron algorithm. The machine
was connected to a camera
that used 20×20 cadmium sul-
fide photocells to produce a
400-pixel image. The main
visible feature is a patchboard
that allowed experimentation
with different combinations of
input features. To the right
of that are arrays of po-
tentiometers that implemented
the adaptive weights.
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The perceptron learning rule

how to learn h(x) = sign(w>x − b) so that h(xi ) ≈ yi?

perceptron algorithm [Rosenblatt, 1962]:

I initialize w = 0

I while there is a misclassified example (x , y)

I w ← w + yx
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Perceptron: iteration 1
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Perceptron: iteration 3
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Perceptron: iteration 5

15 / 29



Perceptron: iteration 7
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Perceptron: iteration 9
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Perceptron: iteration 11
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Perceptron: iteration 13
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Margin of classifier

correct classification means{
w>x > 0, y = 1

w>x < 0, y = −1

=⇒ yw>x > 0

Definition

The margin of classifier w on example (x , y) is

yw>x

I positive margin means (x , y) is correctly classified by w

I negative margin means (x , y) is not correctly classified by w

I bigger margin means (x , y) is more correctly classified
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The perceptron learning rule

notation: use superscripts w (t) for iterates

perceptron algorithm [Rosenblatt, 1962]:

I initialize w (0) = 0

I for t = 1, . . .

I if there is a misclassified example (x (t), y (t))
I w (t+1) = w (t) + y (t)x (t)

I else quit
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The perceptron learning rule

perceptron algorithm: for misclassified (x (t), y (t)),

w (t+1) = w (t) + y (t)x (t)

Q: why is this a good idea?
A: classification is “better” for w (t+1) than for w (t):
we will show: margin on (x (t), y (t)) is bigger for w (t+1). recall

Definition

The margin of classifier w on example (x , y) is

yw>x

I positive margin means (x , y) is correctly classified by w

I negative margin means (x , y) is not correctly classified by w
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The perceptron learning rule

perceptron algorithm: for misclassified (x (t), y (t)),

w (t+1) = w (t) + y (t)x (t)

why is this a good idea?

I example (x (t), y (t)) is misclassified at time t
I ⇐⇒ sign(w (t)>x (t)) 6= y (t)

I ⇐⇒ y (t)w (t)>x (t) < 0.
I compute

y (t)w (t+1)>x (t) = y (t)(w (t) + y (t)x (t))>x (t)

= y (t)w (t)>x (t) + (y (t))2‖x (t)‖2

≥ y (t)w (t)>x (t)

I so w (t+1) classifies (x (t), y (t)) better than w (t) did
(but possibly still not correctly)
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perceptron algorithm: for misclassified (x (t), y (t)),
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Linearly separable data

Definition

the data D = {(x1, y1), . . . , (xn, yn)} is linearly separable if

yi = sign((w \)>xi ) i = 1, . . . , n

for some vector w \.

that is, there is some hyperplane that (strictly) separates the
data into positive and negative examples

I w \ has positive margin yiw
>xi > 0 for every example

I so the minimum margin ρ = mini=1,...,n yix
>
i w \ > 0
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The perceptron learning rule works

how do we know that the perceptron algorithm will work?

we’ll prove that

Theorem

If the data is linearly separable, then the perceptron algorithm
eventually makes no mistakes.

downside: it could take a long time. . .

21 / 29



The perceptron learning rule works

how do we know that the perceptron algorithm will work?

we’ll prove that

Theorem

If the data is linearly separable, then the perceptron algorithm
eventually makes no mistakes.

downside: it could take a long time. . .

21 / 29



The perceptron learning rule works

how do we know that the perceptron algorithm will work?

we’ll prove that

Theorem

If the data is linearly separable, then the perceptron algorithm
eventually makes no mistakes.

downside: it could take a long time. . .

21 / 29



Proof of convergence (I)

Let w \ be a vector that strictly separates the data into positive
and negative examples. So the minimum margin is positive:

ρ = min
i=1,...,n

yix
>
i w \ > 0.

Suppose for simplicity that we start with w (0) = 0.

I Notice w (t) becomes aligned with w \:

(w \)>w (t+1) = (w \)>(w (t) + y (t)x (t))

= (w \)>w (t) + y (t)(w \)>x (t)

≥ (w \)>w (t) + ρ.

I So by induction, as long as there’s a misclassified example
at time t,

(w \)>w (t) ≥ ρt.
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Proof of convergence (II)

I Define R = maxi=1,...,n ‖xi‖.
I Notice ‖w (t)‖ doesn’t grow too fast:

‖w (t+1)‖2 = ‖w (t) + y (t)x (t)‖2

= ‖w (t)‖2 + ‖x (t)‖2 + 2y (t)w (t)>x (t)

≤ ‖w (t)‖2 + ‖x (t)‖2

≤ ‖w (t)‖2 + R2

because (x (t), y (t)) was misclassified by w (t).

I So by induction,
‖w (t)‖2 ≤ tR2.
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Proof of convergence (III)

I So as long as there’s a misclassified example at time t,

(w \)>w (t) ≥ ρt and ‖w (t)‖2 ≤ tR2.

I Put it together: if there’s a misclassified example at time t,

ρt ≤ (w \)>w (t) ≤ ‖w \‖‖w (t)‖ ≤ ‖w \‖
√
tR,

so

t ≤
(
‖w \‖R
ρ

)2

.

This bounds the maximum running time of the algorithm!
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Understanding the bound

I is the bound tight? why or why not?

I what does the bound tell us about non-separable data?
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Perceptron with outlier: iteration 1
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Perceptron with outlier: iteration 2

25 / 29



Perceptron with outlier: iteration 3
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Perceptron with outlier: iteration 4
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Perceptron with outlier: iteration 5
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Perceptron with outlier: iteration 47
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Perceptron with outlier: iteration 48
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Perceptron with outlier: iteration 49

25 / 29



Perceptron with outlier: iteration 50
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How to measure error?

Q: How to measure the quality of an (imperfect) linear classifier?

I Number of misclassifications:

n∑
i=1

yi 6= sign(w>xi )

I Size of misclassifications (attempt 1):

n∑
i=1

max(−yiw>xi , 0)

I Size of misclassifications (attempt 2):

n∑
i=1

max(1− yiw
>xi , 0)
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Recap: Perceptron

I a simple learning algorithm to learn a linear classifier

I themes we’ll see again: linear functions, iterative updates,
margin

I how we plotted the data: axes = X , color = Y
I vector w ∈ Rd defines linear decision boundary

I simplify algorithm with feature transformation

I proof of convergence: induction, Cauchy-Schwartz, linear
algebra
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Schema for supervised learning

I unknown target function f : X → Y
I training examples D = {(x1, y1), . . . , (xn, yn)}
I hypothesis set H
I learning algorithm A
I final hypothesis g : X → Y
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Generalization

how well will our classifier do on new data?

I if we know nothing about the new data, no guarantees

I but if the new data looks statistically like the old. . .
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