ORIE 4741: Learning with Big Messy Data Loss functions

Professor Udell

Operations Research and Information Engineering Cornell

November 4, 2021

Announcements 11/2/21

- hw5 will come out this Thursday or Friday
- section this week: post-hoc interpretability techniques (SHAP, LIME)

Announcements 11/4/21

- hw5 will come out today or tomorrow
- section this week: post-hoc interpretability techniques (SHAP, LIME)
- teamwork issues on the project? let's talk!
- Iet me see your faces!

Poll

My team is changing the direction of our project, compared to our proposal

- A. yes
- B. no

Poll

My team is changing the direction of our project, compared to our proposal

- A. yes
- B. no

My team has different team members, compared to our proposal

- A. yes
- B. no

Regularized empirical risk minimization

choose model by solving

minimize
$$\frac{1}{n}\sum_{i=1}^{n}\ell(x_i, y_i; w) + r(w)$$

with variable $w \in \mathbf{R}^d$

• parameter vector
$$w \in \mathbf{R}^d$$

▶ loss function
$$\ell : \mathcal{X} \times \mathcal{Y} \times \mathbf{R}^d \to \mathbf{R}$$

• regularizer
$$r : \mathbf{R}^d \to \mathbf{R}$$

Regularized empirical risk minimization

choose model by solving

minimize
$$\frac{1}{n}\sum_{i=1}^{n}\ell(x_i, y_i; w) + r(w)$$

with variable $w \in \mathbf{R}^d$

• parameter vector
$$w \in \mathbf{R}^{c}$$

▶ loss function
$$\ell : \mathcal{X} \times \mathcal{Y} \times \mathbf{R}^d \to \mathbf{R}$$

• regularizer
$$r : \mathbf{R}^d \to \mathbf{R}$$

why?

- ▶ want to minimize the **risk** $\mathbb{E}_{(x,y)\sim P}\ell(x,y;w)$
- approximate it by the **empirical risk** $\sum_{i=1}^{n} \ell(x, y; w)$
- add regularizer to help model generalize

Loss functions

what kind of loss functions should we use? depends on **type** of data

- real
- boolean
- ordinal
- nominal
- ▶ ...

and on noise in data

- small?
- large but sparse?
- from some probabilistic model?

Outline

Regression

Classification

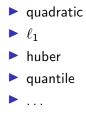
The prediction space

Multiclass classification

Ordinal regression

Beyond linear models

Loss functions for real-valued data



Least squares regression

least squares (ℓ_2) regression:

minimize
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + r(w)$$

$$\underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - w)^2?$$

Least squares regression

least squares (ℓ_2) regression:

minimize
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + r(w)$$

special case: no covariates. what is

$$\underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - w)^2?$$

A: mean(y)!

ℓ_1 regression

 ℓ_1 regression:

minimize
$$\frac{1}{n}\sum_{i=1}^{n}|y_i - w^T x_i| + r(w)$$

$$\underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} |y_i - w|?$$

ℓ_1 regression

 ℓ_1 regression:

minimize
$$\frac{1}{n}\sum_{i=1}^{n}|y_i - w^T x_i| + r(w)$$

$$\underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} |y_i - w|?$$

ℓ_1 regression

 ℓ_1 regression:

minimize
$$\frac{1}{n}\sum_{i=1}^{n}|y_i - w^T x_i| + r(w)$$

$$\underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} |y_i - w|?$$

Notation

define the positive and negative parts of $x \in \mathbf{R}$

$$(x)_{+} = \max(x, 0), \quad (x)_{-} = \max(-x, 0)$$

Quantile regression

Quantile regression: for $lpha \in (0,1)$,

minimize
$$\frac{1}{n} \sum_{i=1}^{n} \alpha (y_i - w^T x_i)_+ + (1 - \alpha)(y_i - w^T x_i)_-$$

$$\underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \alpha (y_i - w)_+ + (1 - \alpha)(y_i - w)_-?$$

Quantile regression

Quantile regression: for $\alpha \in (0, 1)$,

minimize
$$\frac{1}{n} \sum_{i=1}^{n} \alpha (y_i - w^T x_i)_+ + (1 - \alpha)(y_i - w^T x_i)_-$$

$$\underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \alpha(y_i - w)_+ + (1 - \alpha)(y_i - w)_-?$$

- if pn of the y_i's are bigger than w,
- then as w increases to $w + \delta$,
- first term decreases by $p\alpha\delta$
- second term increases by $(1-p)(1-\alpha)\delta$
- so if $p = 1 \alpha$, objective stays the same

Quantile regression

Quantile regression: for $\alpha \in (0, 1)$,

minimize
$$\frac{1}{n} \sum_{i=1}^{n} \alpha (y_i - w^T x_i)_+ + (1 - \alpha)(y_i - w^T x_i)_-$$

$$\underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \alpha(y_i - w)_+ + (1 - \alpha)(y_i - w)_-?$$

- if pn of the y_i's are bigger than w,
- then as w increases to $w + \delta$,
- first term decreases by $p\alpha\delta$
- second term increases by $(1 p)(1 \alpha)\delta$
- so if $p = 1 \alpha$, objective stays the same
- A: w is the α th quantile of y!

Huber regression

Huber regression:

minimize
$$\frac{1}{n}\sum_{i=1}^{n}$$
 huber $(y_i - w^T x_i) + r(w)$

where we define the Huber function

huber
$$(z) = \begin{cases} \frac{1}{2}z^2 & |z| \le 1\\ |z| - \frac{1}{2} & |z| > 1 \end{cases}$$

Huber regression

Huber regression:

minimize
$$\frac{1}{n}\sum_{i=1}^{n}$$
 huber $(y_i - w^T x_i) + r(w)$

where we define the Huber function

huber
$$(z) = \left\{ egin{array}{cc} rac{1}{2}z^2 & |z| \leq 1 \\ |z| - rac{1}{2} & |z| > 1 \end{array}
ight.$$

Huber decomposes error into a small (Gaussian) part and a large (sparse) part

huber(x) =
$$\inf_{s+n=x} |s| + \frac{1}{2}n^2$$

(proof: take derivative)

Robust statistics

the ℓ_1 and Huber loss functions are called robust loss functions

Q: when would you want to use a robust loss function?

Robust statistics

the ℓ_1 and Huber loss functions are called robust loss functions

- **Q:** when would you want to use a robust loss function? **A:** for **robustness** in the presence of large outliers
 - large, infrequenct sensor malfunctions
 - people lying on surveys
 - anything that's not a sum of small iid random variables

Demo: robust regression

https://github.com/ORIE4741/demos/blob/master/
robust_regression.ipynb

- least squares regression: mean error is 0
- ℓ_1 regression: median error is 0
- quantile regression: α th quantile of error is 0

Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models

suppose $\mathcal{Y} = \{-1, 1\}$. let $\ell(x, y; w) =$

suppose $\mathcal{Y} = \{-1, 1\}$. let $\ell(x, y; w) =$

▶ 0-1 loss $1(y \neq \operatorname{sign}(w^T x))$

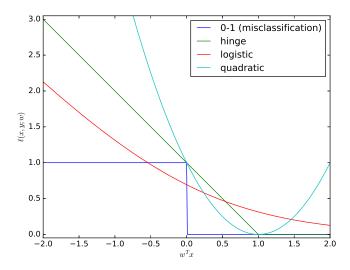
• quadratic loss
$$(y - w^T x)^2$$

▶

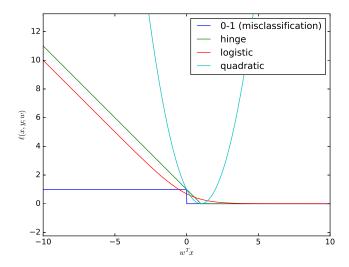
• logistic loss
$$\log(1 + \exp(-w^T x))$$

trade off dislike of false positives vs false negatives

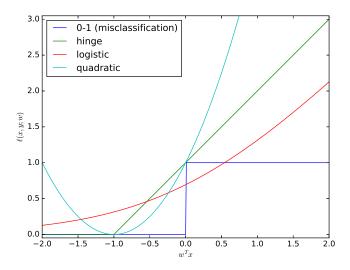
$$y = 1$$



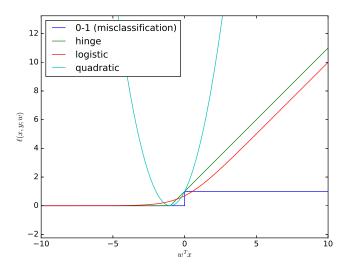
$$y = 1$$



$$y = -1$$



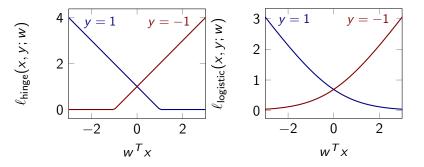
$$y = -1$$



Losses for classification

▶ hinge loss
 ℓ_{hinge}(x, y; w) = (1 - yw^Tx)₊
 ▶ logistic loss

$$\ell_{\mathsf{logistic}}(x, y; w) = \mathsf{log}(1 + \mathsf{exp}\left(-yw^{\mathsf{T}}x\right))$$



Logistic loss: interpretation

logistic function maps real numbers to probabilities

$$\operatorname{logistic}(u) = \frac{\exp(u)}{1 + \exp(u)} = \frac{1}{1 + \exp(-u)}$$

• suppose that given $w^T x$, y is a Bernoulli random variable

$$y = \begin{cases} 1 & \text{with prob logistic}(w^T x) \\ -1 & \text{with prob } (1 - \text{logistic}(w^T x)) = \text{logistic}(-w^T x) \end{cases}$$

notice $\mathbb{P}(y|w, x) = \text{logistic}(yw^T x)$
logistic loss is -log $\mathbb{P}(y|w, x)$

$$\begin{split} \ell_{\text{logistic}}(x, y; w) &= -\log(\text{logistic}(yw^T x)) \\ &= -\log\left(\frac{1}{1 + \exp\left(-yw^T x\right)}\right) \\ &= \log\left(1 + \exp\left(-yw^T x\right)\right) \end{split}$$

Hinge loss: interpretation

Hinge loss
$$\ell_{hinge}(x, y; w) = (1 - yw' x)_+$$
. Solve
minimize $||w||^2$
subject to $\sum_{(x,y)\in D} \ell_{hinge}(x, y; w) = 0$

Hinge loss: interpretation

Hinge loss
$$\ell_{\text{hinge}}(x, y; w) = (1 - yw^T x)_+$$
. Solve
minimize $||w||^2$
subject to $\sum_{(x,y)\in\mathcal{D}} \ell_{\text{hinge}}(x, y; w) = 0$

Poll: does this problem always have a solution?

A. yes

B. no

Hinge loss: interpretation

Hinge loss
$$\ell_{\text{hinge}}(x, y; w) = (1 - yw^T x)_+$$
. Solve
minimize $||w||^2$
subject to $\sum_{(x,y)\in\mathcal{D}} \ell_{\text{hinge}}(x, y; w) = 0$

Poll: does this problem always have a solution?

A. yes B. no

Poll: does this problem always have a solution, if the data is separable?

A. yes

B. no

Hinge loss
$$\ell_{\text{hinge}}(x, y; w) = (1 - yw^T x)_+$$
. Solve

subject to
$$\sum_{(x,y)\in\mathcal{D}} \ell_{\text{hinge}}(x,y;w) = 0$$

solution classifies every point correctly, with a safety margin:

$$yw^T x \ge 1, \qquad (x, y) \in \mathcal{D}.$$

Hinge loss
$$\ell_{hinge}(x, y; w) = (1 - yw^T x)_+$$
. Solve

minimize
$$||w||^2$$

subject to $\sum_{(x,y)\in\mathcal{D}} \ell_{hinge}(x,y;w) = 0$

solution classifies every point correctly, with a safety margin:

$$yw^T x \ge 1,$$
 $(x, y) \in \mathcal{D}.$

compare to perceptron:

Hinge loss
$$\ell_{hinge}(x, y; w) = (1 - yw^T x)_+$$
. Solve

minimize
$$||w||^2$$

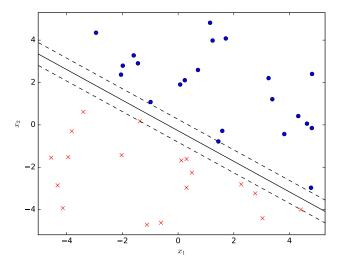
subject to $\sum_{(x,y)\in\mathcal{D}} \ell_{hinge}(x,y;w) = 0$

solution classifies every point correctly, with a safety margin:

$$yw^T x \ge 1, \qquad (x, y) \in \mathcal{D}.$$

compare to perceptron: unique solution, safety margin

Hinge loss: exact fit



solid line: $w^T x = 0$; dashed lines: $w^T x = \pm 1$

26 / 59

$$yx^Tw =$$
 distance to classification boundary, if $||w|| = 1$
 $yx^T\frac{w}{||w||} =$ distance to classification boundary, always

so if $yx^T w \ge 1$ for every $(x, y) \in \mathcal{D}$,

distance to classification boundary = $yx^T \frac{w}{\|w\|} \ge \frac{1}{\|w\|}$ for every $(x, y) \in \mathcal{D}$.

Support Vector Machine (SVM)

now instead solve the support vector machine problem (SVM)

minimize
$$\sum_{i=1}^{n} \ell_{\text{hinge}}(x_i, y_i; w) + \lambda ||w||^2$$

Support Vector Machine (SVM)

now instead solve the support vector machine problem (SVM)

minimize
$$\sum_{i=1}^{n} \ell_{\text{hinge}}(x_i, y_i; w) + \lambda ||w||^2$$

Poll: does this problem always have a solution?

A. yes

B. no

Support Vector Machine (SVM)

now instead solve the support vector machine problem (SVM)

minimize
$$\sum_{i=1}^{n} \ell_{hinge}(x_i, y_i; w) + \lambda ||w||^2$$

Poll: does this problem always have a solution?

- A. yes
- B. no
- allows some mistakes

trades off the severity of mistakes with the safety margin

suppose $\mathcal{Y} = \{-1, 1\}$. let $\ell(x, y; w) =$

suppose
$$\mathcal{Y} = \{-1, 1\}$$
. let $\ell(x, y; w) =$
A. 0-1 loss $\mathbb{1}(y \neq \operatorname{sign}(w^T x))$
B. quadratic loss $(y - w^T x)^2$
C. hinge loss $(1 - yw^T x)_+$
D. logistic loss $\log(1 + \exp(-w^T x))$
E. ...

trade off dislike of false positives vs false negatives

suppose
$$\mathcal{Y} = \{-1, 1\}$$
. let $\ell(x, y; w) =$
A. 0-1 loss $\mathbb{1}(y \neq \operatorname{sign}(w^T x))$
B. quadratic loss $(y - w^T x)^2$
C. hinge loss $(1 - yw^T x)_+$
D. logistic loss $\log(1 + \exp(-w^T x))$
E. ...

trade off dislike of false positives vs false negatives properties: (select any loss that is)

continuous?

suppose
$$\mathcal{Y} = \{-1, 1\}$$
. let $\ell(x, y; w) =$
A. 0-1 loss $\mathbb{1}(y \neq \operatorname{sign}(w^T x))$
B. quadratic loss $(y - w^T x)^2$
C. hinge loss $(1 - yw^T x)_+$
D. logistic loss $\log(1 + \exp(-w^T x))$
E. ...

- continuous? quadratic, hinge, logistic
- differentiable?

suppose
$$\mathcal{Y} = \{-1, 1\}$$
. let $\ell(x, y; w) =$
A. 0-1 loss $\mathbb{1}(y \neq \operatorname{sign}(w^T x))$
B. quadratic loss $(y - w^T x)^2$
C. hinge loss $(1 - yw^T x)_+$
D. logistic loss $\log(1 + \exp(-w^T x))$
E. ...

- continuous? quadratic, hinge, logistic
- differentiable? quadratic, logistic
- insensitive to outliers?

suppose
$$\mathcal{Y} = \{-1, 1\}$$
. let $\ell(x, y; w) =$
A. 0-1 loss $\mathbb{1}(y \neq \operatorname{sign}(w^T x))$
B. quadratic loss $(y - w^T x)^2$
C. hinge loss $(1 - yw^T x)_+$
D. logistic loss $\log(1 + \exp(-w^T x))$
E. ...

- continuous? quadratic, hinge, logistic
- differentiable? quadratic, logistic
- insensitive to outliers? 0-1
- sensitive to outliers?

suppose
$$\mathcal{Y} = \{-1, 1\}$$
. let $\ell(x, y; w) =$
A. 0-1 loss $\mathbb{1}(y \neq \operatorname{sign}(w^T x))$
B. quadratic loss $(y - w^T x)^2$
C. hinge loss $(1 - yw^T x)_+$
D. logistic loss $\log(1 + \exp(-w^T x))$
E. ...

- continuous? quadratic, hinge, logistic
- differentiable? quadratic, logistic
- insensitive to outliers? 0-1
- sensitive to outliers? quadratic
- quadratic?

suppose
$$\mathcal{Y} = \{-1, 1\}$$
. let $\ell(x, y; w) =$
A. 0-1 loss $\mathbb{1}(y \neq \operatorname{sign}(w^T x))$
B. quadratic loss $(y - w^T x)^2$
C. hinge loss $(1 - yw^T x)_+$
D. logistic loss $\log(1 + \exp(-w^T x))$
E. ...

- continuous? quadratic, hinge, logistic
- differentiable? quadratic, logistic
- insensitive to outliers? 0-1
- sensitive to outliers? quadratic
- quadratic? quadratic
- probabilistic interpretation?

suppose
$$\mathcal{Y} = \{-1, 1\}$$
. let $\ell(x, y; w) =$
A. 0-1 loss $\mathbb{1}(y \neq \operatorname{sign}(w^T x))$
B. quadratic loss $(y - w^T x)^2$
C. hinge loss $(1 - yw^T x)_+$
D. logistic loss $\log(1 + \exp(-w^T x))$
E. ...

- continuous? quadratic, hinge, logistic
- differentiable? quadratic, logistic
- insensitive to outliers? 0-1
- sensitive to outliers? quadratic
- quadratic? quadratic
- probabilistic interpretation? logistic

Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models

Ordinal regression and multiclass classification for trees

predicting different kinds of data is easy for trees:

- pick an error (impurity) metric
- choose split to greedily minimize error metric
- predict majority class (classification) or median (regression)

Ordinal regression and multiclass classification for trees

predicting different kinds of data is easy for trees:

- pick an error (impurity) metric
- choose split to greedily minimize error metric
- predict majority class (classification) or median (regression)

predicting different kinds of data is harder for linear models:

- model produces continuous value(s)
- to predict, we must map continuous output to correct kind of predictions (boolean, ordinal, nominal, ...)

Recap linear models

 \blacktriangleright input space \mathbf{R}^d \blacktriangleright output space \mathcal{Y} \blacktriangleright regression: $\mathcal{Y} = \mathbf{R}$ • classification: $\mathcal{Y} = \{-1, 1\}$ \triangleright parameter space \mathbf{R}^d • hypothesis class $h \in \mathcal{H}$ $\mathcal{H} = \{h : \mathbf{R}^d \times \mathbf{R}^d \to \mathbf{R}\}$ e.g., $\mathcal{H} = \{h : h(x; w) = w^T x\}$ rewrite the objective using this notation

minimize
$$\frac{1}{n}\sum_{i=1}^{n}\ell(y_i,h(x_i;w))+r(w)$$

with variable $w \in \mathbf{R}^d$

The prediction space

- input space X
- output space Y
- ▶ parameter space *W*
- prediction space Z
- hypothesis class $h \in \mathcal{H}$

$$\mathcal{H} = \{h: \mathcal{X} \times \mathcal{W} \to \mathcal{Z}\}$$

rewrite the objective using this notation

minimize
$$\frac{1}{n}\sum_{i=1}^{n}\ell(y_i,h(x_i;w))+r(w)$$

with variable $w \in \mathcal{W}$

▶ loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbf{R}$ maps between prediction space and output space

How to predict?

given

- ▶ a loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbf{R}$
- ▶ a hypothesis class $h : X \times W$, and
- model parameters $w \in \mathcal{W}$ fit to data
- **Q:** how to predict \hat{y} for a new sample x?

How to predict?

given

- ▶ a loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbf{R}$
- ▶ a hypothesis class $h : X \times W$, and
- model parameters $w \in \mathcal{W}$ fit to data
- **Q:** how to predict \hat{y} for a new sample x?
- A: predict \hat{y} by solving

 $\hat{y} = \operatorname*{argmin}_{y \in \mathcal{Y}} \ell(y, h(x; w))$

How to predict?

given

- ▶ a loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbf{R}$
- a hypothesis class $h : \mathcal{X} \times \mathcal{W}$, and
- model parameters $w \in \mathcal{W}$ fit to data
- **Q:** how to predict \hat{y} for a new sample x?
- A: predict \hat{y} by solving

 $\hat{y} = \operatorname*{argmin}_{y \in \mathcal{Y}} \ell(y, h(x; w))$

MLE interpretation: if $z = w^T x$, $\ell(y, z) = -\log P(y \mid z)$, then \hat{y} is most probable $y \in \mathcal{Y}$ given $z = w^T x$.

given

- ▶ a loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbf{R}$
- ▶ a hypothesis class $h : X \times W$, and
- model parameters $w \in \mathcal{W}$ fit to data

predict \hat{y} by solving

$$\hat{y} = \operatorname*{argmin}_{y \in \mathcal{Y}} \ell(y, h(x; w))$$

for quadratic loss, $\mathcal{Y} = \mathbf{R}$, $w^T x = 5.2$, $\hat{y} =$

A. 5.2 B. 1 C. -5.2 D. -1 E. 0

given

- ▶ a loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbf{R}$
- a hypothesis class $h : \mathcal{X} \times \mathcal{W}$, and
- model parameters $w \in \mathcal{W}$ fit to data

predict \hat{y} by solving

$$\hat{y} = \operatorname*{argmin}_{y \in \mathcal{Y}} \ell(y, h(x; w))$$

for quadratic loss, $\mathcal{Y} = \{-1, 1\}$, $w^T x = 5.2$, $\hat{y} =$

- A. 5.2 B. 1 C. -5.2 D. -1
- E. 0

given

- ▶ a loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbf{R}$
- a hypothesis class $h : \mathcal{X} \times \mathcal{W}$, and
- model parameters $w \in \mathcal{W}$ fit to data

predict \hat{y} by solving

$$\hat{y} = \operatorname*{argmin}_{y \in \mathcal{Y}} \ell(y, h(x; w))$$

for hinge loss, $\mathcal{Y} = \{-1, 1\}$, $w^T x = 5.2$, $\hat{y} =$

A. 5.2 B. 1 C. -5.2 D. -1 E. 0

given

- ▶ a loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbf{R}$
- a hypothesis class $h : \mathcal{X} \times \mathcal{W}$, and
- model parameters $w \in \mathcal{W}$ fit to data

predict \hat{y} by solving

$$\hat{y} = \operatorname*{argmin}_{y \in \mathcal{Y}} \ell(y, h(x; w))$$

for huber loss, $\mathcal{Y} = \mathbf{R}$, $w^T x = 5.2$, $\hat{y} =$

A. 5.2 B. 1 C. -5.2 D. -1 E. 0

given

- ▶ a loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbf{R}$
- ▶ a hypothesis class $h : X \times W$, and
- model parameters $w \in \mathcal{W}$ fit to data

predict \hat{y} by solving

$$\hat{y} = \operatorname*{argmin}_{y \in \mathcal{Y}} \ell(y, h(x; w))$$

for logistic loss, $\mathcal{Y} = \{-1, 1\}$, $w^T x = 5.2$, $\hat{y} =$

- A. 5.2 B. 1 C. -5.2 D. -1
- **E**. 0

Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models

Multiclass classification

how to predict nominal values?

Multiclass classification

how to predict nominal values?

▶ idea 1: classification

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)

Multiclass classification

how to predict nominal values?

idea 1: classification

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- 3. each entry of z = h(x; w) will predict corresponding entry of $\psi(y)$

idea 2: learning probabilities

- 1. learn the probability $\mathbb{P}(y = y' \mid x)$ for every $y' \in \mathcal{Y}$
- 2. predict $y = \operatorname{argmax}_{y' \in \mathcal{Y}} \mathbb{P}(y = y' \mid x)$
- 3. z = h(x; w) will parametrize probability distribution

Multiclass classification: examples

examples:

- classifying which breed of dog is present in an image
- classifying the type of heart disease given a electrocardiogram (EKG)
- predicting if a water well is ok, needs repair, or is defunct
- more examples from projects?

Multiclass classification via binary classification

idea 1: classification

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)
- **Q:** how to pick $\psi(y)$? (suppose $\mathcal{Y} = \{1, \dots, k\}$)

idea 1: classification

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)
- **Q:** how to pick $\psi(y)$? (suppose $\mathcal{Y} = \{1, \dots, k\}$)

idea 1: classification

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)
- **Q:** how to pick $\psi(y)$? (suppose $\mathcal{Y} = \{1, \dots, k\}$)

• one-hot encoding: $\psi(y) = (-1, \dots, \underbrace{1}^{y \text{th entry}}, \dots, -1)$ $= 2(\mathbf{1}(y = 1), \dots, \mathbf{1}(y = k)) - 1 \in \{-1, 1\}^k$

(resulting scheme is called **one-vs-all** classification)

idea 1: classification

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)
- **Q:** how to pick $\psi(y)$? (suppose $\mathcal{Y} = \{1, \dots, k\}$)

• one-hot encoding: $\psi(y) = (-1, \dots, \underbrace{1}^{y \text{th entry}}, \dots, -1)$ $= 2(\mathbf{1}(y=1), \dots, \mathbf{1}(y=k)) - 1 \in \{-1, 1\}^k$

(resulting scheme is called **one-vs-all** classification)binary codes:

idea 1: classification

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)
- **Q:** how to pick $\psi(y)$? (suppose $\mathcal{Y} = \{1, \dots, k\}$)

• one-hot encoding: $\psi(y) = (-1, \dots, \underbrace{1}^{y \text{th entry}}, \dots, -1)$ $= 2(\mathbf{1}(y = 1), \dots, \mathbf{1}(y = k)) - 1 \in \{-1, 1\}^k$

(resulting scheme is called **one-vs-all** classification)binary codes:

- define binary expansion of y, $bin(y) \in \{-1, 1\}^{log(k)}$
- let $\psi(y) = 2 \operatorname{bin}(y) 1 \in \{-1, 1\}^{\log(k)}$

idea 1: classification

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)
- **Q:** how to pick $\psi(y)$? (suppose $\mathcal{Y} = \{1, \dots, k\}$)

• one-hot encoding: $\psi(y) = (-1, \dots, \underbrace{1}^{y \text{th entry}}, \dots, -1)$ $= 2(\mathbf{1}(y = 1), \dots, \mathbf{1}(y = k)) - 1 \in \{-1, 1\}^k$

(resulting scheme is called **one-vs-all** classification)binary codes:

- define binary expansion of y, $bin(y) \in \{-1, 1\}^{log(k)}$
- let $\psi(y) = 2 \operatorname{bin}(y) 1 \in \{-1, 1\}^{\log(k)}$
- error-correcting codes

idea 1: classification

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)
- **Q:** how to pick $\psi(y)$? (suppose $\mathcal{Y} = \{1, \dots, k\}$)

• one-hot encoding: $\psi(y) = (-1, \dots, \underbrace{1}^{y \text{th entry}}, \dots, -1)$ $= 2(\mathbf{1}(y = 1), \dots, \mathbf{1}(y = k)) - 1 \in \{-1, 1\}^k$

(resulting scheme is called **one-vs-all** classification)binary codes:

- define binary expansion of y, $bin(y) \in \{-1, 1\}^{log(k)}$
- let $\psi(y) = 2 \operatorname{bin}(y) 1 \in \{-1, 1\}^{\log(k)}$
- error-correcting codes

these vary in the **dimension** of $\psi(y) = \text{dimension of } z$

idea 1: classification

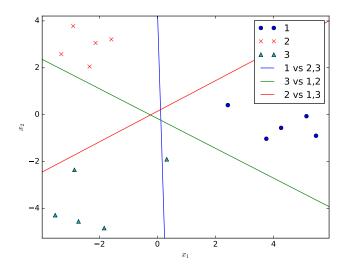
- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y) \in \{-1,1\}^k$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)
- **Q:** how to predict entries of $\psi(y) \in \{-1, 1\}^k$?

idea 1: classification

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y) \in \{-1, 1\}^k$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)
- **Q:** how to predict entries of $\psi(y) \in \{-1, 1\}^k$?
 - reduce to a bunch of binary problems!
 - ▶ let $W \in \mathbf{R}^{k \times d}$, so $z = Wx \in \mathbf{R}^k$
 - pick your favorite loss function ℓ^{bin} for binary classification
 - ▶ fit parameter W by minimizing loss function

$$\ell^{\mathsf{nom}}(y,z) = \sum_{i=1}^{k} \ell^{\mathsf{bin}}(\psi(y)_i, z_i)$$

One-vs-All classification



Multiclass classification via learning probabilities

(for concreteness, suppose $\mathcal{Y} = \{1, \dots, k\}$)

idea 2: learning probabilities

1. learn the probability $\mathbb{P}(y = y' \mid x)$ for every $y' \in \mathcal{Y}$

2. predict
$$y = \operatorname{argmax}_{y' \in \mathcal{Y}} \mathbb{P}(y = y' \mid x)$$

3. $z = h(x; w) \in \mathbf{R}^k$ will parametrize probability distribution

Q: how to predict probabilities?

Multiclass classification via learning probabilities

▶ let
$$W \in \mathbf{R}^{k \times d}$$
, so $Wx \in \mathbf{R}^k$

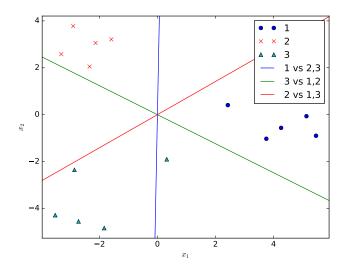
multinomial logit takes a hint from logistic: let z = h(x; W) = Wx, and suppose

$$\mathbb{P}(y = i \mid z) = \frac{\exp(z_i)}{\sum_{j=1}^{k} \exp(z_j)}$$

(ensures probabilities are positive and sum to 1)fit by minimizing negative log likelihood

$$egin{aligned} \ell(y,z) &= & -\log\left(\mathbb{P}(y\mid z)
ight) \ &= & -\log\left(rac{\exp\left(z_y
ight)}{\sum_{j=1}^k \exp\left(z_j
ight)}
ight) \end{aligned}$$

Multinomial classification



Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models

how to predict ordinal values?

how to predict ordinal values?

idea 0: regression

1. encode $y \in \mathcal{Y}$ in **R**

how to predict ordinal values?

idea 0: regression

1. encode $y \in \mathcal{Y}$ in **R**

idea 1: classification

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)

how to predict ordinal values?

idea 0: regression

1. encode $y \in \mathcal{Y}$ in **R**

idea 1: classification

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)

idea 2: learning probabilities

- 1. learn the probability $\mathbb{P}(y = y' \mid x)$ for every $y' \in \mathcal{Y}$
- 2. predict $y = \operatorname{argmax}_{y' \in \mathcal{Y}} \mathbb{P}(y = y' \mid x)$
- 3. z = h(x; w) will parametrize probability distribution

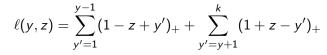
(for concreteness, suppose $\mathcal{Y} = \{1, \dots, k\}$)

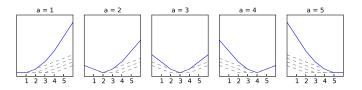
idea 0: regression

- 1. encode $y \in \mathcal{Y}$ in **R**
- 2. predict with $\mathcal{Z} = \mathbf{R}$
- quadratic loss

$$\ell(y,z)=(y-z)^2$$

ordinal hinge loss





idea 1: classification (suppose $\mathcal{Y} = \{1, \dots, k\}$)

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)
- how to encode y as a vector?

idea 1: classification (suppose $\mathcal{Y} = \{1, \dots, k\}$)

- 1. encode $y \in \mathcal{Y}$ as a vector $\psi(y)$
- 2. predict entries of $\psi(y)$
- each entry of z = h(x; w) will predict corresponding entry of ψ(y)
- how to encode y as a vector? how about

$$\psi(\mathbf{y}) = (1, \dots, 1, \overbrace{-1}^{\text{yth entry}}, \dots, -1) \in \{-1, 1\}^{k-1}$$

(resulting scheme is called **bigger-vs-smaller** classification) • let $W \in \mathbf{R}^{k-1 \times d}$, so $z = Wx \in \mathbf{R}^{k-1}$

pick your favorite loss function l^{bin} for binary classification
 fit model W by minimizing loss function

$$\ell^{\operatorname{ord}}(y;z) = \sum_{i=1}^{k-1} \ell^{\operatorname{bin}}(\psi(y)_i;z_i)$$

set
$$\psi(y) = (1, \ldots, 1, \overbrace{-1}^{y \text{th entry}}, \ldots, -1) \in \{-1, 1\}^{k-1}$$
let $W \in \mathbb{R}^{k-1 \times d}$, so $z = Wx \in \mathbb{R}^{k-1}$

fit parameter W by minimizing loss function

$$\ell^{\mathsf{ord}}(y;z) = \sum_{i=1}^{k-1} \ell^{\mathsf{bin}}(\psi(y)_i, z_i)$$

- ► ith column of W defines a line separating levels y ≤ i from levels y > i
- **Q**: How to predict \hat{y} given x and W?

set
$$\psi(y) = (1, \ldots, 1, \overbrace{-1}^{y \text{th entry}}, \ldots, -1) \in \{-1, 1\}^{k-1}$$
let $W \in \mathbb{R}^{k-1 \times d}$, so $z = Wx \in \mathbb{R}^{k-1}$

fit parameter W by minimizing loss function

$$\ell^{\mathsf{ord}}(y;z) = \sum_{i=1}^{k-1} \ell^{\mathsf{bin}}(\psi(y)_i, z_i)$$

- ► ith column of W defines a line separating levels y ≤ i from levels y > i
- **Q**: How to predict \hat{y} given x and W?
- A: Compute z = Wx, and predict

$$\hat{y} = \operatorname*{argmin}_{y \in \mathcal{Y}} \ell^{\mathsf{ord}}(y; z)$$



Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models

Coding and decoding

we now have four different spaces

- ▶ input space X
- output space \mathcal{Y}
- ▶ parameter space *W*
- prediction space Z
- a model is given by a choice of
 - ▶ loss function $\ell : \mathcal{Y} \times \mathcal{Z} \to \mathbf{R}$,
 - regularizer $r : W \to \mathbf{R}$, and
 - ▶ hypothesis class $h : \mathcal{X} \times \mathcal{W} \rightarrow \mathcal{Z}$

we fit the model by solving

minimize
$$\frac{1}{n}\sum_{i=1}^{n}\ell(y_i,h(x_i;w))+r(w)$$

to find $w \in \mathcal{W}$

given a parameter $w \in W$ and a new input $x \in X$, we **predict** $y \in \mathcal{Y}$ by solving

$$y = \operatorname*{argmin}_{y \in \mathcal{Y}} \ell(y, h(x_i; w))$$

What models fit in this framework?

- linear models
- linear models with feature transformations
- decision trees
- neural networks
- generalized additive models
- unsupervised learning (!)

Resources

quantile regression https://www.cscu.cornell.edu/ news/statnews/stnews70.pdf