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Announcements 11/2/21

I hw5 will come out this Thursday or Friday

I section this week: post-hoc interpretability techniques
(SHAP, LIME)
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Announcements 11/4/21

I hw5 will come out today or tomorrow

I section this week: post-hoc interpretability techniques
(SHAP, LIME)

I teamwork issues on the project? let’s talk!

I let me see your faces!
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Poll

My team is changing the direction of our project, compared to
our proposal

A. yes

B. no

My team has different team members, compared to our proposal

A. yes

B. no
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Regularized empirical risk minimization

choose model by solving

minimize
1

n

n∑
i=1

`(xi , yi ;w) + r(w)

with variable w ∈ Rd

I parameter vector w ∈ Rd

I loss function ` : X × Y × Rd → R

I regularizer r : Rd → R

why?

I want to minimize the risk E(x ,y)∼P`(x , y ;w)

I approximate it by the empirical risk
∑n

i=1 `(x , y ;w)

I add regularizer to help model generalize
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Loss functions

what kind of loss functions should we use?

depends on type of data

I real

I boolean

I ordinal

I nominal

I . . .

and on noise in data

I small?

I large but sparse?

I from some probabilistic model?

I . . .
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Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models
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Loss functions for real-valued data

I quadratic

I `1

I huber

I quantile

I . . .
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Least squares regression

least squares (`2) regression:

minimize
1

n

n∑
i=1

(yi − wT xi )
2 + r(w)

special case: no covariates. what is

argmin
w

1

n

n∑
i=1

(yi − w)2?

A: mean(y)!
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`1 regression

`1 regression:

minimize
1

n

n∑
i=1

|yi − wT xi |+ r(w)

special case: no covariates. what is

argmin
w

1

n

n∑
i=1

|yi − w |?

I if pn of the yi ’s are bigger than w,
I then as w increases to w + δ,
I 1

n

∑
i :yi>w |yi − w | decreases by pδ

I 1
n

∑
i :yi<w |yi − w | increases by (1− p)δ

I if p = 1
2 , objective stays the same

A: w = median(y)!
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Notation

define the positive and negative parts of x ∈ R

(x)+ = max(x , 0), (x)− = max(−x , 0)
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Quantile regression

Quantile regression: for α ∈ (0, 1),

minimize
1

n

n∑
i=1

α(yi − wT xi )+ + (1− α)(yi − wT xi )−

special case: no covariates. what is

argmin
w

1

n

n∑
i=1

α(yi − w)+ + (1− α)(yi − w)−?

I if pn of the yi ’s are bigger than w,
I then as w increases to w + δ,
I first term decreases by pαδ
I second term increases by (1− p)(1− α)δ
I so if p = 1− α, objective stays the same

A: w is the αth quantile of y !
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Huber regression

Huber regression:

minimize
1

n

n∑
i=1

huber(yi − wT xi ) + r(w)

where we define the Huber function

huber(z) =

{
1
2z

2 |z | ≤ 1
|z | − 1

2 |z | > 1

Huber decomposes error into a small (Gaussian) part and a large
(sparse) part

huber(x) = inf
s+n=x

|s|+ 1

2
n2

(proof: take derivative)
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Robust statistics

the `1 and Huber loss functions are called robust loss functions

Q: when would you want to use a robust loss function?

A: for robustness in the presence of large outliers

I large, infrequenct sensor malfunctions

I people lying on surveys

I anything that’s not a sum of small iid random variables
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Demo: robust regression

https://github.com/ORIE4741/demos/blob/master/

robust_regression.ipynb

I least squares regression: mean error is 0

I `1 regression: median error is 0

I quantile regression: αth quantile of error is 0
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Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models
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Loss functions for classification

suppose Y = {−1, 1}. let `(x , y ;w) =

I 0-1 loss 1(y 6= sign(wT x))

I quadratic loss (y − wT x)2

I hinge loss (1− ywT x)+
I logistic loss log(1 + exp

(
−wT x

)
)

I . . .

trade off dislike of false positives vs false negatives
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Loss functions for classification

y = 1
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Loss functions for classification

y = 1
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Losses for classification

I hinge loss
`hinge(x , y ;w) = (1− ywT x)+

I logistic loss

`logistic(x , y ;w) = log(1 + exp
(
−ywT x

)
)

−2 0 2

0

2

4 y = 1 y = −1

wT x

` h
in
g
e
(x
,y

;w
)

−2 0 2
0

1

2

3 y = 1 y = −1

wT x

` l
o
g
is
ti
c
(x
,y

;w
)
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Logistic loss: interpretation

I logistic function maps real numbers to probabilities

logistic(u) =
exp (u)

1 + exp (u)
=

1

1 + exp (−u)

I suppose that given wT x , y is a Bernoulli random variable

y =

{
1 with prob logistic(wT x)
−1 with prob (1− logistic(wT x)) = logistic(−wT x)

notice P(y |w , x) = logistic(ywT x)
I logistic loss is -log P(y |w , x)

`logistic(x , y ;w) = − log(logistic(ywT x))

= − log

(
1

1 + exp (−ywT x)

)
= log

(
1 + exp

(
−ywT x

))
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Hinge loss: interpretation

Hinge loss `hinge(x , y ;w) = (1− ywT x)+. Solve

minimize ‖w‖2
subject to

∑
(x ,y)∈D `hinge(x , y ;w) = 0

Poll: does this problem always have a solution?

A. yes

B. no

Poll: does this problem always have a solution, if the data is
separable?

A. yes

B. no
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ywT x ≥ 1, (x , y) ∈ D.

I compare to perceptron: unique solution, safety margin
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Hinge loss: exact fit

4 2 0 2 4
x1

4

2

0

2

4

x
2

solid line: wT x = 0; dashed lines: wT x = ±1
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Hinge loss: interpretation

yxTw = distance to classification boundary, if ‖w‖ = 1

yxT
w

‖w‖
= distance to classification boundary, always

so if yxTw ≥ 1 for every (x , y) ∈ D,

distance to classification boundary = yxT
w

‖w‖
≥ 1

‖w‖

for every (x , y) ∈ D.
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Support Vector Machine (SVM)

now instead solve the support vector machine problem (SVM)

minimize
n∑

i=1

`hinge(xi , yi ;w) + λ‖w‖2

Poll: does this problem always have a solution?

A. yes

B. no

I allows some mistakes

I trades off the severity of mistakes with the safety margin
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Loss functions for classification

suppose Y = {−1, 1}. let `(x , y ;w) =

A. 0-1 loss 1(y 6= sign(wT x))

B. quadratic loss (y − wT x)2

C. hinge loss (1− ywT x)+
D. logistic loss log(1 + exp

(
−wT x

)
)

E. . . .

trade off dislike of false positives vs false negatives

properties: (select any loss that is)

I continuous? quadratic, hinge, logistic
I differentiable? quadratic, logistic
I insensitive to outliers? 0-1
I sensitive to outliers? quadratic
I quadratic? quadratic
I probabilistic interpretation? logistic
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Regression
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The prediction space

Multiclass classification

Ordinal regression

Beyond linear models
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Ordinal regression and multiclass classification for

trees

predicting different kinds of data is easy for trees:

I pick an error (impurity) metric

I choose split to greedily minimize error metric

I predict majority class (classification) or median (regression)

predicting different kinds of data is harder for linear models:

I model produces continuous value(s)

I to predict, we must map continuous output to correct kind
of predictions (boolean, ordinal, nominal, . . . )
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Recap linear models

I input space Rd

I output space Y
I regression: Y = R
I classification: Y = {−1, 1}

I parameter space Rd

I hypothesis class h ∈ H

H = {h : Rd × Rd → R}

e.g., H = {h : h(x ;w) = wT x}
I rewrite the objective using this notation

minimize
1

n

n∑
i=1

`(yi , h(xi ;w)) + r(w)

with variable w ∈ Rd
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The prediction space

I input space X
I output space Y
I parameter space W
I prediction space Z
I hypothesis class h ∈ H

H = {h : X ×W → Z}

I rewrite the objective using this notation

minimize
1

n

n∑
i=1

`(yi , h(xi ;w)) + r(w)

with variable w ∈ W
I loss function ` : Y ×Z → R maps between prediction space

and output space

33 / 59



How to predict?

given

I a loss function ` : Y × Z → R

I a hypothesis class h : X ×W, and

I model parameters w ∈ W fit to data

Q: how to predict ŷ for a new sample x?

A: predict ŷ by solving

ŷ = argmin
y∈Y

`(y , h(x ;w))

MLE interpretation: if z = wT x , `(y , z) = − logP(y | z),
then ŷ is most probable y ∈ Y given z = wT x .
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ŷ = argmin
y∈Y

`(y , h(x ;w))

MLE interpretation: if z = wT x , `(y , z) = − logP(y | z),
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Prediction: examples

given

I a loss function ` : Y × Z → R
I a hypothesis class h : X ×W, and

I model parameters w ∈ W fit to data

predict ŷ by solving

ŷ = argmin
y∈Y

`(y , h(x ;w))

for quadratic loss, Y = R, wT x = 5.2, ŷ =

A. 5.2

B. 1

C. −5.2

D. −1

E. 0
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predict ŷ by solving

ŷ = argmin
y∈Y

`(y , h(x ;w))

for hinge loss, Y = {−1, 1}, wT x = 5.2, ŷ =

A. 5.2

B. 1

C. −5.2

D. −1

E. 0
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Prediction: examples

given

I a loss function ` : Y × Z → R
I a hypothesis class h : X ×W, and

I model parameters w ∈ W fit to data

predict ŷ by solving

ŷ = argmin
y∈Y

`(y , h(x ;w))

for huber loss, Y = R, wT x = 5.2, ŷ =

A. 5.2

B. 1

C. −5.2

D. −1

E. 0
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Prediction: examples

given

I a loss function ` : Y × Z → R
I a hypothesis class h : X ×W, and

I model parameters w ∈ W fit to data

predict ŷ by solving

ŷ = argmin
y∈Y

`(y , h(x ;w))

for logistic loss, Y = {−1, 1}, wT x = 5.2, ŷ =

A. 5.2

B. 1

C. −5.2

D. −1

E. 0
39 / 59



Outline

Regression

Classification

The prediction space

Multiclass classification

Ordinal regression

Beyond linear models

40 / 59



Multiclass classification

how to predict nominal values?

I idea 1: classification
1. encode y ∈ Y as a vector ψ(y)
2. predict entries of ψ(y)
3. each entry of z = h(x ;w) will predict corresponding entry

of ψ(y)

I idea 2: learning probabilities
1. learn the probability P(y = y ′ | x) for every y ′ ∈ Y
2. predict y = argmaxy ′∈Y P(y = y ′ | x)
3. z = h(x ;w) will parametrize probability distribution
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Multiclass classification: examples

examples:

I classifying which breed of dog is present in an image

I classifying the type of heart disease given a
electrocardiogram (EKG)

I predicting if a water well is ok, needs repair, or is defunct

I more examples from projects?
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Multiclass classification via binary classification

idea 1: classification

1. encode y ∈ Y as a vector ψ(y)
2. predict entries of ψ(y)
3. each entry of z = h(x ;w) will predict corresponding entry

of ψ(y)

Q: how to pick ψ(y)? (suppose Y = {1, . . . , k})

I one-hot encoding:

ψ(y) = (−1, . . . ,

yth entry︷︸︸︷
1 , . . . ,−1)

= 2(1(y = 1), . . . , 1(y = k))− 1 ∈ {−1, 1}k

(resulting scheme is called one-vs-all classification)
I binary codes:

I define binary expansion of y , bin(y) ∈ {−1, 1}log(k)
I let ψ(y) = 2 bin(y)− 1 ∈ {−1, 1}log(k)

I error-correcting codes

these vary in the dimension of ψ(y) = dimension of z
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Multiclass classification via binary classification

idea 1: classification

1. encode y ∈ Y as a vector ψ(y) ∈ {−1, 1}k

2. predict entries of ψ(y)

3. each entry of z = h(x ;w) will predict corresponding entry
of ψ(y)

Q: how to predict entries of ψ(y) ∈ {−1, 1}k?

I reduce to a bunch of binary problems!

I let W ∈ Rk×d , so z = Wx ∈ Rk

I pick your favorite loss function `bin for binary classification

I fit parameter W by minimizing loss function

`nom(y , z) =
k∑

i=1

`bin(ψ(y)i , zi )
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One-vs-All classification
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Multiclass classification via learning probabilities

(for concreteness, suppose Y = {1, . . . , k})
idea 2: learning probabilities

1. learn the probability P(y = y ′ | x) for every y ′ ∈ Y
2. predict y = argmaxy ′∈Y P(y = y ′ | x)

3. z = h(x ;w) ∈ Rk will parametrize probability distribution

Q: how to predict probabilities?

46 / 59



Multiclass classification via learning probabilities

I let W ∈ Rk×d , so Wx ∈ Rk

I multinomial logit takes a hint from logistic:
let z = h(x ;W ) = Wx , and suppose

P(y = i | z) =
exp (zi )∑k
j=1 exp (zj)

(ensures probabilities are positive and sum to 1)

I fit by minimizing negative log likelihood

`(y , z) = − log (P(y | z))

= − log

(
exp (zy )∑k
j=1 exp (zj)

)
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Multinomial classification
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Ordinal regression

how to predict ordinal values?

I idea 0: regression
1. encode y ∈ Y in R

I idea 1: classification
1. encode y ∈ Y as a vector ψ(y)
2. predict entries of ψ(y)
3. each entry of z = h(x ;w) will predict corresponding entry

of ψ(y)

I idea 2: learning probabilities
1. learn the probability P(y = y ′ | x) for every y ′ ∈ Y
2. predict y = argmaxy ′∈Y P(y = y ′ | x)
3. z = h(x ;w) will parametrize probability distribution
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Ordinal regression

(for concreteness, suppose Y = {1, . . . , k})
idea 0: regression

1. encode y ∈ Y in R
2. predict with Z = R

I quadratic loss
`(y , z) = (y − z)2

I ordinal hinge loss

`(y , z) =

y−1∑
y ′=1

(1− z + y ′)+ +
k∑

y ′=y+1

(1 + z − y ′)+

1 2 3 4 5

a = 1

1 2 3 4 5

a = 2

1 2 3 4 5

a = 3

1 2 3 4 5

a = 4

1 2 3 4 5

a = 5

51 / 59



Ordinal regression via predicting a vector

idea 1: classification (suppose Y = {1, . . . , k})
1. encode y ∈ Y as a vector ψ(y)
2. predict entries of ψ(y)
3. each entry of z = h(x ;w) will predict corresponding entry

of ψ(y)

I how to encode y as a vector?

how about

ψ(y) = (1, . . . , 1,

yth entry︷︸︸︷
−1 , . . . ,−1) ∈ {−1, 1}k−1

(resulting scheme is called bigger-vs-smaller classification)
I let W ∈ Rk−1×d , so z = Wx ∈ Rk−1

I pick your favorite loss function `bin for binary classification
I fit model W by minimizing loss function

`ord(y ; z) =
k−1∑
i=1

`bin(ψ(y)i ; zi )
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Ordinal regression via predicting a vector

I set ψ(y) = (1, . . . , 1,

yth entry︷︸︸︷
−1 , . . . ,−1) ∈ {−1, 1}k−1

I let W ∈ Rk−1×d , so z = Wx ∈ Rk−1

I fit parameter W by minimizing loss function

`ord(y ; z) =
k−1∑
i=1

`bin(ψ(y)i , zi )

I ith column of W defines a line separating levels y ≤ i from
levels y > i

Q: How to predict ŷ given x and W ?

A: Compute z = Wx , and predict

ŷ = argmin
y∈Y

`ord(y ; z)
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A: Compute z = Wx , and predict
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Ordinal regression
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Coding and decoding

we now have four different spaces

I input space X
I output space Y
I parameter space W
I prediction space Z

a model is given by a choice of

I loss function ` : Y × Z → R,

I regularizer r :W → R, and

I hypothesis class h : X ×W → Z
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we fit the model by solving

minimize
1

n

n∑
i=1

`(yi , h(xi ;w)) + r(w)

to find w ∈ W
given a parameter w ∈ W and a new input x ∈ X , we predict
y ∈ Y by solving

y = argmin
y∈Y

`(y , h(xi ;w))
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What models fit in this framework?

I linear models

I linear models with feature transformations

I decision trees

I neural networks

I generalized additive models

I unsupervised learning (!)

I . . .
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Resources

I quantile regression https://www.cscu.cornell.edu/

news/statnews/stnews70.pdf
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