ORIE 4741: Learning with Big Messy Data Linear Models and Linear Least Squares

Professor Udell

Operations Research and Information Engineering Cornell

October 16, 2021

Announcements 9/7/21

- section this week: python for data science (seaborn and pandas)
- hw1 is out, due next week
- missed the quiz? set a reminder for this week!
- private question? ask @staff on Zulip
- I will announce when you can register physical iClicker on Canvas...

Announcements 9/9/21

- column (3, 4) vs row [3, 4] vectors
- start looking for project groups: post your idea on zulip in the #project channel

Announcements 9/14/21

- section this week: github + jupyter tutorial
- bonus section from last year: linear algebra review
- hw1 is out, due this Thursday at 9:15am
- form project groups by this Sunday. see https://people. orie.cornell.edu/mru8/orie4741/projects.html
- looking for a project group? post your idea on zulip in the #project channel

How many Cornell students tested positive for COVID yesterday?

- **A**. 2
- **B**. 6
- C. 13
- D. 27
- E. 233

Did your iClicker record your participation for last lecture 9/9/21?

- A. yes
- B. no

Questions about homework 1 should be posted on Zulip

- A. in the #general channel, with a topic like "homework"
- B. in the #homework 1 channel, with a topic like "q3c ambiguous wording"

Can we see examples of good projects from previous years?

- A. yes
- B. no

Outline

Regression

Gradient descent

Least squares via gradient descent

Faster!

Proofs for GD

Least squares via normal equations

QR

Supervised learning setup

- input space X
 - $x \in \mathcal{X}$ is called the **covariate**, **feature**, or **independent** variable
- output space Y
 - y ∈ 𝔅 is called the response, outcome, label, or dependent variable

• given
$$\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$$

- D is called the data, examples, observations, samples or measurements
- we will find some $h \in \mathcal{H}$ so that (we hope!)

$$h(x_i) \approx y_i, \quad i=1,\ldots,n$$

Supervised learning

different names for different $\mathcal{Y}s$:

- classification: $\mathcal{Y} = \{-1, 1\}$
- regression: $\mathcal{Y} = \mathbf{R}$
- multiclass classification: $\mathcal{Y} = \{car, pedestrian, bike\}$
- ordinal regression:
 - $\mathcal{Y} = \{ \mathsf{strongly \ disagree}, \dots, \mathsf{strongly \ agree} \}$

Regression

examples where $\mathcal{Y} = \mathbf{R}$:

- predict credit score of applicant
- predict temperature in Ithaca a year from today
- predict travel time at rush hour
- predict # positive COVID cases at Cornell tomorrow

Regression

examples where $\mathcal{Y} = \mathbf{R}$:

- predict credit score of applicant
- predict temperature in Ithaca a year from today
- predict travel time at rush hour
- predict # positive COVID cases at Cornell tomorrow

careful: are all real number valid predictions?

Linear model for regression

suppose
$$\mathcal{X} = \mathbf{R}^d$$
, $\mathcal{Y} = \mathbf{R}$

▶ predict y using a linear function $h : \mathbf{R}^d \to \mathbf{R}$ $h(x) = w^\top x$

• we want $h(x_i) \approx y_i$ for every $i = 1, \ldots, n$

Linear model++

suppose $\mathcal{X} = \mathsf{anything}, \ \mathcal{Y} = \textbf{R}$

- ▶ pick a transformation $\phi : \mathcal{X} \to \mathbf{R}^d$
- predict y using a linear function of $\phi(x)$

$$h(x) = w^{\top} \phi(x)$$

• we want
$$h(x_i) \approx y_i$$
 for every $i = 1, \ldots, n$

Linear model++

suppose $\mathcal{X} = \mathsf{anything}, \, \mathcal{Y} = \textbf{R}$

- pick a transformation $\phi : \mathcal{X} \to \mathbf{R}^d$
- predict y using a linear function of $\phi(x)$

$$h(x) = w^{\top} \phi(x)$$

• we want
$$h(x_i) \approx y_i$$
 for every $i = 1, \ldots, n$

choices:

- how to pick ϕ ?
- ▶ how to pick w?

Linear model++

suppose $\mathcal{X} = \mathsf{anything}, \, \mathcal{Y} = \textbf{R}$

- pick a transformation $\phi : \mathcal{X} \to \mathbf{R}^d$
- predict y using a linear function of $\phi(x)$

$$h(x) = w^{\top} \phi(x)$$

• we want
$$h(x_i) \approx y_i$$
 for every $i = 1, \ldots, n$

choices:

• how to pick ϕ ?

how to pick w?

for now, assume d and ϕ are fixed; we'll return to these later...

Least squares fitting

define prediction error or residual

$$r_i = y_i - h(x_i), \qquad i = 1, \ldots, n$$

choose w to minimize sum of square residuals

$$\sum_{i=1}^{n} (r_i)^2 = \sum_{i=1}^{n} (y_i - h(x_i))^2 = \sum_{i=1}^{n} (y_i - w^{\top} x_i)^2$$

Why minimize the sum of square residuals?

- A. the sum of square residuals is what I truly care about when predicting # positive COVID cases
- B. because it's easy to find the w that minimizes it

Least squares fitting

rewrite using linear algebra:

- ▶ form vector $y \in \mathbf{R}^n$: each outcome y_i is an entry of y
- ▶ form matrix $X \in \mathbf{R}^{n \times d}$: each example x_i is a row of X
- rewrite error:

$$\sum_{i=1}^{n} (r_i)^2 = \sum_{i=1}^{n} (y_i - w^{\top} x_i)^2 = \|y - Xw\|^2$$

interpretation:

Xw is a linear combination of the columns of X
we seek the linear combination that best matches y

Real numbers are generally represented as **floating point** numbers on a computer.

Definition

A **floating point operation** (flop) adds, multiplies, subtracts, or divides two floating point numbers.

example: to check objective value of w

$$\|y - Xw\|^2$$

requires 2nd flops

How many flops to compute 3 * 2 + 4 * 6?

- **A**. 2
- **B**. 3
- C. 4
- D. 5

How many flops to compute $u^T v$, where u = (3, 4) and v = (2, 6)?

- A. 2
- **B**. 3
- C. 4
- D. 5

How many flops to compute $u^T v$, where $u, v \in \mathbf{R}^d$?

- A. d-1
- B. d
- ${\sf C}. \ {\sf d}{+}1$
- D. 2d-1
- E. 2d

How many flops to compute Xw, where $X \in \mathbf{R}^{n \times d}$, $w \in \mathbf{R}^d$?

- A. n+2d-1
- B. 2n+2d-1
- C. 2nd
- D. n(2d-1)
- E. 2n(2d-1)

How many flops to compute y - z, where $y, z \in \mathbf{R}^n$?

- A. n-1
- B. n
- $\mathsf{C}. \ \mathsf{n{+}1}$
- D. 2n-1
- E. 2n

How many flops to compute $||y||^2$, where $y \in \mathbf{R}^n$?

- A. n-1
- $B. \ n$
- $\mathsf{C}. \ \mathsf{n}{+}1$
- D. 2n-1
- E. 2n

How many flops to compute $||y||^2$, where $y \in \mathbf{R}^n$?

- A. n-1
- B. n
- ${\sf C}. \ {\sf n+1}$
- D. 2n-1
- E. 2n

note $\|y\|^2 = y^T y$

To compute $||y - Xw||^2$,

To compute $||y - Xw||^2$, high n(2d - 1) = O(nd) flops to compute Xw

To compute $||y - Xw||^2$,

To compute $\|y - Xw\|^2$,

To compute $\|y - Xw\|^2$,

Outline

Regression

Gradient descent

Least squares via gradient descent

Faster!

Proofs for GD

Least squares via normal equations

QR

Optimization

in this lecture, we will see two methods to solve the problem

minimize f(w)

with $w \in \mathbf{R}^n$ when f is differentiable

- 1. gradient descent
- 2. solve normal equations

when f is convex, both methods provably find the solution

Optimization

in this lecture, we will see two methods to solve the problem

minimize f(w)

with $w \in \mathbf{R}^n$ when f is differentiable

- 1. gradient descent
- 2. solve normal equations

when f is convex, both methods provably find the solution

example: for least squares, $f(w) = ||y - Xw||^2$
the **gradient** $\nabla f(w)$ generalizes the derivative.

Definition

for $w \in \mathbf{R}^d$, $f : \mathbf{R}^d \to \mathbf{R}$ differentiable,

$$abla f(w) = \left(rac{\partial f}{\partial w_1}, \dots, rac{\partial f}{\partial w_d}
ight) \in \mathbf{R}^d$$

the **gradient** $\nabla f(w)$ generalizes the derivative.

Definition

for $w \in \mathbf{R}^d$, $f : \mathbf{R}^d \to \mathbf{R}$ differentiable,

$$abla f(w) = \left(rac{\partial f}{\partial w_1}, \dots, rac{\partial f}{\partial w_d}
ight) \in \mathbf{R}^d$$

▶ allows easy computation of directional derivatives: for fixed $v \in \mathbf{R}^d$, let $w^+(\alpha) = w + \alpha v$. then

$$\frac{d}{d\alpha}f(w^{+}(\alpha)) = \frac{\partial f}{\partial w_{1}^{+}}\frac{dw_{1}^{+}}{d\alpha} + \dots + \frac{\partial f}{\partial w_{d}^{+}}\frac{dw_{d}^{+}}{d\alpha}$$
$$= (\nabla f(w))^{\top}v$$

the **gradient** $\nabla f(w)$ generalizes the derivative.

Definition

for $w \in \mathbf{R}^d$, $f : \mathbf{R}^d \to \mathbf{R}$ differentiable,

$$abla f(w) = \left(rac{\partial f}{\partial w_1}, \dots, rac{\partial f}{\partial w_d}
ight) \in \mathbf{R}^d$$

▶ allows easy computation of directional derivatives: for fixed $v \in \mathbf{R}^d$, let $w^+(\alpha) = w + \alpha v$. then

$$\frac{d}{d\alpha}f(w^{+}(\alpha)) = \frac{\partial f}{\partial w_{1}^{+}}\frac{dw_{1}^{+}}{d\alpha} + \dots + \frac{\partial f}{\partial w_{d}^{+}}\frac{dw_{d}^{+}}{d\alpha}$$
$$= (\nabla f(w))^{\top}v$$

locally approximates f(w):

$$f(w + \alpha v) \approx f(w) + \alpha (\nabla f(w))^{\top} v$$
 28/7

$$f(w + \alpha v) \approx f(w) + \alpha (\nabla f(w))^{\top} v$$

Q: From the point w, which direction v should we travel in to make f(w) increase as fast as possible?

$$f(w + \alpha v) \approx f(w) + \alpha (\nabla f(w))^{\top} v$$

Q: From the point w, which direction v should we travel in to make f(w) **increase** as fast as possible? **A:** In the direction $v = \nabla f(w)$, to maximize $(\nabla f(w))^{\top} v$

$$f(w + \alpha v) \approx f(w) + \alpha (\nabla f(w))^{\top} v$$

Q: From the point w, which direction v should we travel in to make f(w) **increase** as fast as possible? **A:** In the direction $v = \nabla f(w)$, to maximize $(\nabla f(w))^{\top} v$

Q: From the point w, which direction v should we travel in to make f(w) decrease as fast as possible?

$$f(w + \alpha v) \approx f(w) + \alpha (\nabla f(w))^{\top} v$$

Q: From the point w, which direction v should we travel in to make f(w) **increase** as fast as possible? **A:** In the direction $v = \nabla f(w)$, to maximize $(\nabla f(w))^{\top} v$

Q: From the point w, which direction v should we travel in to make f(w) **decrease** as fast as possible? **A:** In the direction $v = -\nabla f(w)$

Demo: gradient descent

let's verify these properties of gradients numerically
https://github.com/ORIE4741/demos/blob/master/
gradient_descent.ipynb

Gradient descent

minimize f(w)

idea: go downhill to get to a (the?) minimum!

Algorithm Gradient descent

Given: $f : \mathbf{R}^d \to \mathbf{R}$, stepsize α , maxiters **Initialize:** w = 0 (or anything you'd like) **For:** $k = 1, \dots,$ maxiters

update w:

$$w \leftarrow w - \alpha \nabla f(w)$$

Gradient descent

minimize f(w)

AlgorithmGradient descentGiven: $f : \mathbf{R}^d \to \mathbf{R}$, maxitersInitialize: w = 0 (or anything you'd like)For: $k = 1, \dots$, maxiters \triangleright choose stepsize $\alpha^{(k)}$

update w:

$$w^{(k)} = w^{(k-1)} - \alpha^{(k)} \nabla f(w^{(k-1)})$$

nomenclature

Gradient descent: choosing a step-size

- constant step-size. $\alpha^{(k)} = \alpha$ (constant)
- decreasing step-size. $\alpha^{(k)} = 1/k$
- line search. try different possibilities for α^(k) until objective at new iterate

$$f(w^{(k)}) = f(w^{(k-1)} - \alpha^{(k)} \nabla f(w^{(k-1)}))$$

decreases enough.

tradeoff: evaluating f(w) takes O(nd) flops each time ...

define $w^+ = w - \alpha \nabla f(w)$

• exact line search: find α to minimize $f(w^+)$

• the Armijo rule requires α to satisfy

$$f(w^+) \leq f(w) - c\alpha \|\nabla f(w)\|^2$$

for some $c \in (0,1)$, e.g., c = .01.

define $w^+ = w - \alpha \nabla f(w)$

exact line search: find α to minimize f(w⁺)
 the Armijo rule requires α to satisfy

$$f(w^+) \leq f(w) - c\alpha \|\nabla f(w)\|^2$$

for some $c \in (0,1)$, e.g., c = .01.

a simple backtracking line search algorithm:

 \blacktriangleright set $\alpha = 1$

• if step decreases objective value sufficiently, accept w^+ :

$$f(w^+) \leq f(w) - c\alpha \|\nabla f(w)\|^2 \implies w \leftarrow w^+$$

otherwise, halve the stepsize $\alpha \leftarrow \alpha/2$ and try again

define $w^+ = w - \alpha \nabla f(w)$

• exact line search: find α to minimize $f(w^+)$

the Armijo rule requires α to satisfy

$$f(w^+) \leq f(w) - c\alpha \|\nabla f(w)\|^2$$

for some $c \in (0,1)$, e.g., c = .01.

a simple backtracking line search algorithm:

• set $\alpha = 1$

• if step decreases objective value sufficiently, accept w^+ :

$$f(w^+) \leq f(w) - c\alpha \|\nabla f(w)\|^2 \implies w \leftarrow w^+$$

otherwise, halve the stepsize $lpha \leftarrow lpha/2$ and try again

Q: can we can always satisfy the Armijo rule for some α ?

define $w^+ = w - \alpha \nabla f(w)$

• exact line search: find α to minimize $f(w^+)$

• the Armijo rule requires α to satisfy

$$f(w^+) \leq f(w) - c\alpha \|\nabla f(w)\|^2$$

for some $c \in (0,1)$, e.g., c = .01.

a simple backtracking line search algorithm:

• set $\alpha = 1$

• if step decreases objective value sufficiently, accept w^+ :

$$f(w^+) \leq f(w) - c \alpha \|\nabla f(w)\|^2 \implies w \leftarrow w^+$$

otherwise, halve the stepsize $\alpha \leftarrow \alpha/2$ and try again

Q: can we can always satisfy the Armijo rule for some α ? **A:** yes! see gradient descent demo

Outline

Regression

Gradient descent

Least squares via gradient descent

Faster!

Proofs for GD

Least squares via normal equations

QR

Some matrix calculus identities

two useful identities: let w, $b \in \mathbf{R}^d$, $A \in \mathbf{R}^{d imes d}$ symmetric

1. let
$$f(w) = w^{\top}b$$
. Then

$$\nabla f(w) = b$$

2. let
$$f(w) = w^{\top}Aw$$
. Then
 $\nabla f(w) = 2Aw$

verify:

- take partial derivatives wrt each entry of w
- concatenate to get the matrix calculus result

Gradient of the least squares problem

$$f(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2$$

compute $\nabla f(w)$:

$$\nabla f(w) = \sum_{i=1}^{n} \nabla (y_i - w^T x_i)^2$$
$$= \sum_{i=1}^{n} -2(y_i - w^T x_i)x_i$$

Gradient of the least squares problem (matrix version)

$$f(w) = \|y - Xw\|^2$$

compute $\nabla f(w)$:

$$\nabla f(w) = \nabla (y - Xw)^{\top} (y - Xw)$$

= $\nabla (y^{\top}y - w^{\top}X^{\top}y - y^{\top}Xw + w^{\top}X^{\top}Xw)$
= $-\nabla (w^{\top}X^{\top}y + w^{\top}X^{\top}y) + \nabla (w^{\top}X^{\top}Xw)$
= $-2X^{\top}y + 2X^{\top}Xw$

Solving the least squares problem: gradient descent

minimize
$$||y - Xw||^2$$

Algorithm Gradient descent for least squares

Given: $X : \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$, stepsize α , maxiters **Initialize:** w = 0 (or anything you'd like) **For:** k = 1, ..., maxiters

update w:

$$w \leftarrow w + 2\alpha (X^{\top}y - X^{\top}Xw)$$

Poll

Gradient descent update:

$$w \leftarrow w + 2\alpha (X^{\top}y - X^{\top}Xw)$$

How many flops does gradient descent require per iteration, as a function of the number of examples n and number of features d?

- A. $\mathcal{O}(d)$
- B. $\mathcal{O}(n)$
- C. $\mathcal{O}(nd)$
- D. $\mathcal{O}(nd^2)$
- E. $\mathcal{O}(n^2d^2)$

Poll

Gradient descent update:

$$w \leftarrow w + 2\alpha (X^{\top}y - X^{\top}Xw)$$

How many flops does gradient descent require per iteration, as a function of the number of examples n and number of features d?

- A. $\mathcal{O}(d)$
- B. $\mathcal{O}(n)$
- C. $\mathcal{O}(nd)$
- D. $\mathcal{O}(nd^2)$
- E. $\mathcal{O}(n^2d^2)$

compute it as $w + 2\alpha(X^{\top}y - X^{\top}(Xw))$

Demo: gradient descent for least squares

https://github.com/ORIE4741/demos/blob/master/ Gradient%20descent.ipynb

Outline

Regression

Gradient descent

Least squares via gradient descent

Faster!

Proofs for GD

Least squares via normal equations

QR

$$w^+ = w + 2\alpha (X^\top y - X^\top X w)$$

to compute this quickly when $n \gg d$:

$$w^+ = w + 2\alpha (X^\top y - X^\top X w)$$

to compute this quickly when $n \gg d$:

• form Gram matrix $G = X^{\top}X = \sum_{i=1}^{n} x_i x_i^{\top}$ (2nd² flops)

$$w^+ = w + 2\alpha (X^\top y - X^\top X w)$$

to compute this quickly when $n \gg d$:

▶ form Gram matrix G = X^TX = ∑_{i=1}ⁿ x_ix_i^T (2nd² flops)
▶ form b = X^Ty = ∑_{i=1}ⁿ y_ix_i (2nd flops)

$$w^+ = w + 2\alpha (X^\top y - X^\top X w)$$

to compute this quickly when $n \gg d$:

▶ form Gram matrix $G = X^T X = \sum_{i=1}^n x_i x_i^T$ (2nd² flops)
▶ form $b = X^T y = \sum_{i=1}^n y_i x_i$ (2nd flops)
▶ for k = 1, ...▶ update $w^+ = w - 2\alpha(Gw - b)$ (2d² + 3d flops) $\mathcal{O}(nd^2)$ flops to start, plus $\mathcal{O}(d^2)$ per iteration

flops/core is constant over the last decade

- clock speed is roughly 1GHz: 10⁹ cycles per second
- processors do 2–32 flops per cycle

- flops/core is constant over the last decade
 - clock speed is roughly 1GHz: 10⁹ cycles per second
 - processors do 2–32 flops per cycle
- cores/\$ and cores/computer are still increasing
 - your laptop: 4–16 cores
 - my server: 80 cores
 - NVIDIA GPUs: 1000s of cores

- flops/core is constant over the last decade
 - clock speed is roughly 1GHz: 10⁹ cycles per second
 - processors do 2–32 flops per cycle
- cores/\$ and cores/computer are still increasing
 - your laptop: 4–16 cores
 - my server: 80 cores
 - NVIDIA GPUs: 1000s of cores

Q: Can we use parallelism to speed up gradient descent?

$$w^+ = w + 2\alpha (X^\top y - X^\top X w)$$

suppose we have P processors. let $\{\mathcal{N}_j\}_{j=1}^P$ partition $\{1, \ldots, n\}$.

$$w^+ = w + 2\alpha (X^\top y - X^\top X w)$$

suppose we have P processors. let $\{\mathcal{N}_j\}_{j=1}^P$ partition $\{1, \ldots, n\}$.

▶ form the **Gram matrix**
$$G = X^{\top}X = \sum_{p=1}^{P} (\sum_{i \in \mathcal{N}_p} x_i x_i^{\top}) (2nd^2/P \text{ flops per proc})$$

$$w^+ = w + 2\alpha (X^\top y - X^\top X w)$$

suppose we have P processors. let $\{N_j\}_{j=1}^P$ partition $\{1, \ldots, n\}$.

- ▶ form the **Gram matrix** $G = X^{\top}X = \sum_{p=1}^{P} (\sum_{i \in N_p} x_i x_i^{\top}) (2nd^2/P \text{ flops per proc})$
- form $b = X^{\top}y = \sum_{p=1}^{P} (\sum_{i \in \mathcal{N}_p} y_i x_i)$ (2nd/P flops per proc)

$$w^+ = w + 2\alpha (X^\top y - X^\top X w)$$

suppose we have P processors. let $\{N_j\}_{j=1}^P$ partition $\{1, \ldots, n\}$.

- ▶ form the **Gram matrix** $G = X^{\top}X = \sum_{p=1}^{P} (\sum_{i \in \mathcal{N}_p} x_i x_i^{\top}) (2nd^2/P \text{ flops per proc})$
- ► form $b = X^{\top}y = \sum_{p=1}^{P} (\sum_{i \in \mathcal{N}_p} y_i x_i)$ (2nd/P flops per proc)

▶ for k = 1, ...▶ update $w^+ = w - 2\alpha(Gw - b)$ (2d² + 3d flops) $O(nd^2)$ flops per proc to start, plus $O(d^2)$ per iteration
Stochastic gradients?

- computing the gradient is slow
- idea: approximate the gradient!
- a stochastic gradient $\tilde{\nabla} f(w)$ is a random variable with

$$\mathbb{E}\tilde{\nabla}f(w) = \nabla f(w)$$

Stochastic gradient: examples

stochastic gradient obeys $\mathbb{E}\tilde{\nabla}f(w) = \nabla f(w)$ examples: for $f(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2$,

Stochastic gradient: examples

stochastic gradient obeys $\mathbb{E}\tilde{\nabla}f(w) = \nabla f(w)$ examples: for $f(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2$,

single stochastic gradient. pick a random example *i*. set

$$\tilde{\nabla}f(w) = n\nabla(y_i - w^T x_i)^2 = -2n(y_i - w^T x_i)x_i$$

Stochastic gradient: examples

stochastic gradient obeys $\mathbb{E}\tilde{\nabla}f(w) = \nabla f(w)$ examples: for $f(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2$,

single stochastic gradient. pick a random example i. set

$$\tilde{\nabla}f(w) = n\nabla(y_i - w^T x_i)^2 = -2n(y_i - w^T x_i)x_i$$

minibatch stochastic gradient. pick a random set of examples S. set

$$\begin{split} \tilde{\nabla}f(w) &= \frac{n}{|S|} \nabla \left(\sum_{i \in S} (y_i - w^T x_i)^2 \right) \\ &= \frac{n}{|S|} \left(-2 \sum_{i \in S} (y_i - w^T x_i) x_i \right) \end{split}$$

(often, |S| = 50 or so.)

Stochastic gradient method for least squares

minimize
$$||y - Xw||^2$$

Algorithm Stochastic gradient method for least squares **Given:** $X : \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$, stepsize α , maxiters **Initialize:** w = 0 (or anything you'd like) **For:** k = 1, ..., maxiters \blacktriangleright pick *i* at random from $\{1, ..., n\}$ \blacktriangleright update *w*: $w \leftarrow w + 2\alpha n(y_i - w^T x_i)x_i$

- not a descent method; objective can increase!
- can't use linesearch

converges to ball around optimum;
 bigger α ⇒ larger ball

Stochastic gradient method for least squares

minimize $||y - Xw||^2$

Algorithm Stochastic gradient method for least squares

Given: $X : \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$, stepsize α , maxiters

Initialize: w = 0 (or anything you'd like)

For: $k = 1, \ldots, maxiters$

• pick a random subset S from $\{1, \ldots, n\}$

update w:

$$w \leftarrow w + \frac{2\alpha n}{|S|} \sum_{i \in |S|} (y_i - w^T x_i) x_i$$

Poll

Stochastic gradient update:

$$w \leftarrow w + \frac{2\alpha n}{|S|} \sum_{i \in |S|} (y_i - w^T x_i) x_i$$

How many flops does stochastic gradient require per iteration, as a function of the number of examples n and number of features d?

- A. $\mathcal{O}(d^2)$
- B. $O(|S|^2)$
- C. $\mathcal{O}(dn)$
- D. $\mathcal{O}(d|S|)$
- E. $\mathcal{O}(nd^2)$

Demo: SGD

https://github.com/ORIE4741/demos/blob/master/ gradient_descent.ipynb

Outline

Regression

Gradient descent

Least squares via gradient descent

Faster!

Proofs for GD

Least squares via normal equations

QR

Q: Define convexity?

A function f : Rⁿ → R is convex iff it never lies above its chord: for all θ ∈ [0, 1], w, v ∈ Rⁿ

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v)$$

A function f : Rⁿ → R is convex iff it never lies above its chord: for all θ ∈ [0, 1], w, v ∈ Rⁿ

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v)$$

A differentiable function f : Rⁿ → R is convex iff it satisfies the first order condition

$$f(v) - f(w) \ge \nabla f(w)^{\top}(v - w) \qquad \forall w, v \in \mathbf{R}^n$$

A function f : Rⁿ → R is convex iff it never lies above its chord: for all θ ∈ [0, 1], w, v ∈ Rⁿ

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v)$$

A differentiable function f : Rⁿ → R is convex iff it satisfies the first order condition

$$f(v) - f(w) \ge \nabla f(w)^{\top}(v - w) \qquad \forall w, v \in \mathbf{R}^n$$

A twice differentiable function f : Rⁿ → R is convex iff its Hessian is always positive semidefinite: λ_{min}(∇²f) ≥ 0

Poll: Convexity examples

Is this function convex?

A. yes

B. no

Convex function: global proof of optimality

Theorem

For a convex and differentiable function,

 $\nabla f(w) = 0 \iff w \text{ minimizes } f.$

proof:

Convex function: global proof of optimality

Theorem

For a convex and differentiable function,

 $\nabla f(w) = 0 \iff w \text{ minimizes } f.$

proof: if $\nabla f(x)$, then the first order condition says

$$f(y) - f(x) \ge
abla f(x)^{ op} (y - x) = 0 \qquad orall x, y \in \mathbf{R}^n$$

Convex function: global proof of optimality

Theorem

For a convex and differentiable function,

 $\nabla f(w) = 0 \iff w \text{ minimizes } f.$

proof: if $\nabla f(x)$, then the first order condition says

$$f(y) - f(x) \ge \nabla f(x)^{\top}(y - x) = 0 \qquad \forall x, y \in \mathbf{R}^n$$

Q: Counterexample for nonconvex function?

Least squares objective is convex

Theorem

The least squares objective
$$f(w) = ||y - Xw||^2$$
 is convex.

proof: consider any two models w and w'. use the **first order condition for convexity**:

$$f(w') - f(w) \ge (\nabla f(w))^{\top} (w' - w)$$

compute

$$\begin{aligned} f(w') - f(w) &= \|y - Xw'\|^2 - \|y - Xw\|^2 \\ &= y^\top y - 2y^\top Xw' + w'^\top X^\top Xw' - y^\top y + 2y^\top Xw - w^\top X^\top Xw \\ &= -2y^\top X(w' - w) + w'^\top X^\top X(w' - w) + w^\top X^\top X(w' - w) \\ &= -2y^\top X(w' - w) + (w' - w)^\top X^\top X(w' - w) + 2w^\top X^\top X(w' - w) \\ &= -2y^\top X(w' - w) + \|X(w' - w)\|^2 + 2w^\top X^\top X(w' - w) \\ &= -2y^\top X(w' - w) + \|X(w' - w)\|^2 + 2w^\top X^\top X(w' - w) \\ &\geq (-2y^\top X + 2w^\top X^\top X)(w' - w) \\ &= (\nabla f(w))^\top (w' - w) \end{aligned}$$

Least squares is smooth

Definition

A continuously differentiable function $f : \mathbf{R} \to \mathbf{R}$ is *L*-smooth if, for all $w, w' \in \mathbf{R}$,

$$f(w') \leq f(w) + (\nabla f(w))^T (w' - w) + \frac{L}{2} \|w' - w\|^2.$$

claim: the least squares objective $f(w) = ||Xw - y||^2$ is *L*-smooth for $L = 2||X||^2$

Least squares is smooth

Definition

A continuously differentiable function $f : \mathbf{R} \to \mathbf{R}$ is *L*-smooth if, for all $w, w' \in \mathbf{R}$,

$$f(w') \leq f(w) + (\nabla f(w))^T (w' - w) + \frac{L}{2} \|w' - w\|^2.$$

claim: the least squares objective $f(w) = ||Xw - y||^2$ is *L*-smooth for $L = 2||X||^2$ **proof:**

$$f(w') = ||Xw' - y||^{2}$$

$$= ||X(w' - w) + Xw - y||^{2}$$

$$= ||Xw - y||^{2} + 2(Xw - y)^{T}X(w' - w) + ||X(w' - w)||^{2}$$

$$= f(w) + (\nabla f(w))^{T}(w' - w) + ||X(w' - w)||^{2}$$

$$\leq f(w) + (\nabla f(w))^{T}(w' - w) + ||X||^{2}||(w' - w)||^{2}$$

so $L = 2||X||^{2}$, where $||X||$ is the maximum singular value of X
 $_{58/70}$

Gradient descent converges when $\alpha \leq 2/L$

claim: gradient descent converges for an *L*-smooth function $f : \mathbf{R} \to \mathbf{R}$ if the step size $\alpha \le 2/L$. **proof:** f is *L*-smooth, so

$$f(w^{+}) \leq f(w) + (\nabla f(w))^{T}(w^{+} - w) + \frac{L}{2} ||w^{+} - w||^{2}.$$

now use $w^{+} - w = -\alpha \nabla f(w)$:

$$f(w^{+}) \leq f(w) + (\nabla f(w))^{T}(-\alpha \nabla f(w)) + \frac{L}{2} ||-\alpha \nabla f(w)||^{2}$$

$$\leq f(w) - \alpha ||\nabla f(w)||^{2} + \frac{L\alpha^{2}}{2} ||\nabla f(w)||^{2}$$

so $f(w^+) < f(w)$ when

$$-\alpha + \frac{L\alpha^2}{2} < 0 \quad \Longrightarrow \quad \alpha < 2/L$$

Outline

Regression

Gradient descent

Least squares via gradient descent

Faster!

Proofs for GD

Least squares via normal equations

QR

Solving least squares: straight to the bottom

minimize $||y - Xw||^2$

solve by setting the gradient to 0: optimal w satisfies

$$0 = \nabla ||y - Xw||^2$$

= $-2X^\top y + 2X^\top Xw$
 $X^\top Xw = X^\top y$

X^TX is called the Gram matrix
 X^TXw = X^Ty is called the normal equations

Solving least squares: straight to the bottom

minimize $||y - Xw||^2$

solve by setting the gradient to 0: optimal w satisfies

$$0 = \nabla ||y - Xw||^2$$

= $-2X^\top y + 2X^\top Xw$
 $X^\top Xw = X^\top y$

X^TX is called the Gram matrix
 X^TXw = X^Ty is called the normal equations

Normal equations are **very useful** for understanding solution of least squares;

when d is small, they are also useful for solving least squares.

claim: $X^{\top}Xw = X^{\top}y \iff w$ is optimal **proof:** using first order condition,

$$||y - Xw'||^2 - ||y - Xw||^2 \ge (\nabla_w ||y - Xw||^2)^{\top} (w' - w)$$

claim: $X^{\top}Xw = X^{\top}y \iff w$ is optimal **proof:** using first order condition,

$$||y - Xw'||^2 - ||y - Xw||^2 \ge (\nabla_w ||y - Xw||^2)^{\top} (w' - w)$$

• if
$$\nabla_w ||y - Xw||^2 = 0$$
, then for any w' ,
 $||y - Xw'||^2 - ||y - Xw||^2 \ge 0$

claim: $X^{\top}Xw = X^{\top}y \iff w$ is optimal **proof:** using first order condition,

$$||y - Xw'||^2 - ||y - Xw||^2 \ge (\nabla_w ||y - Xw||^2)^{\top} (w' - w)$$

• if
$$\nabla_w \|y - Xw\|^2 = 0$$
, then for any w' ,
 $\|y - Xw'\|^2 - \|y - Xw\|^2 \ge 0$

► so w minimizes $||y - Xw||^2$!

claim: $X^{\top}Xw = X^{\top}y \iff w$ is optimal **proof:** using first order condition,

$$||y - Xw'||^2 - ||y - Xw||^2 \ge (\nabla_w ||y - Xw||^2)^{\top} (w' - w)$$

• if
$$\nabla_w ||y - Xw||^2 = 0$$
, then for any w' ,
 $||y - Xw'||^2 - ||y - Xw||^2 \ge 0$

So w minimizes ||y − Xw||²!
rewrite ∇_w ||y − Xw||² = 0 to get normal equations
$$0 = ∇w ||y − Xw||2$$

$$= -2XTy + 2XTXw$$

$$XTXw = XTy$$

Outline

Regression

Gradient descent

Least squares via gradient descent

Faster!

Proofs for GD

Least squares via normal equations

QR

The fundamental theorem of numerical analysis

Theorem

Never form the inverse (or pseudoinverse) of a matrix explicitly.

(Numerically unstable.)

Corollary: never type inv(X'*X) or pinv(X'*X) to solve the normal equations.

The fundamental theorem of numerical analysis

Theorem

Never form the inverse (or pseudoinverse) of a matrix explicitly.

(Numerically unstable.)

Corollary: never type inv(X'*X) or pinv(X'*X) to solve the normal equations.

Instead: compute the inverse using easier matrices to invert, like

Orthogonal matrices Q:

$$a = Qb \iff Q^T a = b$$

Triangular matrices R: if a = Rb, can find b given R and a by solving sequence of simple, stable equations.

The QR factorization

rewrite X in terms of **QR decomposition** X = QR

•
$$Q \in \mathbf{R}^{n \times d}$$
 has orthogonal columns: $Q^{\top}Q = I_d$

- ▶ $R \in \mathbf{R}^{d \times d}$ is upper triangular: $R_{ij} = 0$ for i > j
- ▶ diagonal of $R \in \mathbf{R}^{d \times d}$ is positive: $R_{ii} > 0$ for i = 1, ..., d
- this factorization always exists and is unique (proof by Gram-Schmidt construction)

can compute QR factorization of X in $2nd^2$ flops

The QR factorization

rewrite X in terms of **QR decomposition** X = QR

•
$$Q \in \mathbf{R}^{n imes d}$$
 has orthogonal columns: $Q^{ op}Q = I_d$

- ▶ $R \in \mathbf{R}^{d \times d}$ is upper triangular: $R_{ij} = 0$ for i > j
- ▶ diagonal of $R \in \mathbf{R}^{d \times d}$ is positive: $R_{ii} > 0$ for i = 1, ..., d
- this factorization always exists and is unique (proof by Gram-Schmidt construction)

can compute QR factorization of X in $2nd^2$ flops

use scipy.linalg.qr:

 $\mathsf{Q},\mathsf{R}=\,\mathbf{qr}\,(\mathsf{X})$

advantage of QR: it's easy to invert R!

QR for least squares

use QR to solve least squares: if X = QR,

$$X^{\top}Xw = X^{\top}y$$
$$(QR)^{\top}QRw = (QR)^{\top}y$$
$$R^{\top}Q^{\top}QRw = R^{\top}Q^{\top}y$$
$$R^{\top}Rw = R^{\top}Q^{\top}y$$
$$Rw = Q^{\top}y$$
$$w = R^{-1}Q^{\top}y$$

Computational considerations

never form the inverse explicitly: numerically unstable!

instead, use QR factorization:

▶ compute QR factorization of X (2nd² flops)
▶ to compute w = R⁻¹Q^Ty
▶ form b = Q^Ty (2nd flops)
▶ compute w = R⁻¹b by back-substitution (d² flops)

Computational considerations

never form the inverse explicitly: numerically unstable!

instead, use QR factorization:

▶ compute QR factorization of X (2nd² flops)
▶ to compute w = R⁻¹Q^Ty
▶ form b = Q^Ty (2nd flops)
▶ compute w = R⁻¹b by back-substitution (d² flops)

in julia (or matlab), the **backslash operator** solves least-squares efficiently (usually, using QR)

$$w = X \setminus y$$

in python, use numpy.lstsq
Demo: QR

https://github.com/ORIE4741/demos/QR.ipynb

Computational speed comparison

	GD	SGM	Gram GD	Parallel GD	QR
initial	0	0	nd ²	nd²/P	nd ²
per iter	nd	<i>S</i> <i>d</i>	d^2	d ²	0

(numbers in flops, omitting constants)

References

- Stanford EE103: "Least squares" and "Least squares data fitting". Boyd, 2016.
- Learning from Data: Chapter 3. Abu-Mostafa, Magdon-Ismail, and Lin, 2012.
- Gradient descent: https://www.cs.cmu.edu/~ggordon/ 10725-F12/slides/05-gd-revisited.pdf. Gordon and Tibshirani, CMU.
- QR factorization: https://en.wikipedia.org/wiki/QR_decomposition