
ORIE 4741: Learning with Big Messy Data

Linear Models and Linear Least Squares

Professor Udell

Operations Research and Information Engineering
Cornell

October 16, 2021

1 / 70



Announcements 9/7/21

I section this week: python for data science (seaborn and
pandas)

I hw1 is out, due next week

I missed the quiz? set a reminder for this week!

I private question? ask @staff on Zulip

I I will announce when you can register physical iClicker on
Canvas. . .
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Announcements 9/9/21

I column (3, 4) vs row [3, 4] vectors

I start looking for project groups: post your idea on zulip in
the #project channel
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Announcements 9/14/21

I section this week: github + jupyter tutorial

I bonus section from last year: linear algebra review

I hw1 is out, due this Thursday at 9:15am

I form project groups by this Sunday. see https://people.

orie.cornell.edu/mru8/orie4741/projects.html

I looking for a project group? post your idea on zulip in the
#project channel
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Poll

How many Cornell students tested positive for COVID
yesterday?

A. 2

B. 6

C. 13

D. 27

E. 233
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Poll

Did your iClicker record your participation for last lecture
9/9/21?

A. yes

B. no
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Poll

Questions about homework 1 should be posted on Zulip

A. in the #general channel, with a topic like “homework”

B. in the #homework 1 channel, with a topic like “q3c
ambiguous wording”
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Poll

Can we see examples of good projects from previous years?

A. yes

B. no
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Outline

Regression

Gradient descent

Least squares via gradient descent

Faster!

Proofs for GD

Least squares via normal equations

QR
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Supervised learning setup

I input space X
I x ∈ X is called the covariate, feature, or independent

variable

I output space Y
I y ∈ Y is called the response, outcome, label, or

dependent variable

I given D = {(x1, y1), . . . , (xn, yn)}
I D is called the data, examples, observations, samples or

measurements

I we will find some h ∈ H so that (we hope!)

h(xi ) ≈ yi , i = 1, . . . , n
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Supervised learning

different names for different Ys:

I classification: Y = {−1, 1}
I regression: Y = R

I multiclass classification: Y = {car, pedestrian, bike}
I ordinal regression:
Y = {strongly disagree, . . . , strongly agree}
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Regression

examples where Y = R:

I predict credit score of applicant

I predict temperature in Ithaca a year from today

I predict travel time at rush hour

I predict # positive COVID cases at Cornell tomorrow

careful: are all real number valid predictions?
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Linear model for regression

suppose X = Rd , Y = R

I predict y using a linear function h : Rd → R

h(x) = w>x

I we want h(xi ) ≈ yi for every i = 1, . . . , n
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Linear model++

suppose X = anything, Y = R

I pick a transformation φ : X → Rd

I predict y using a linear function of φ(x)

h(x) = w>φ(x)

I we want h(xi ) ≈ yi for every i = 1, . . . , n

choices:

I how to pick φ?

I how to pick w?

for now, assume d and φ are fixed; we’ll return to these later. . .
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Least squares fitting

I define prediction error or residual

ri = yi − h(xi ), i = 1, . . . , n

I choose w to minimize sum of square residuals

n∑
i=1

(ri )
2 =

n∑
i=1

(yi − h(xi ))2 =
n∑

i=1

(yi − w>xi )
2
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Poll

Why minimize the sum of square residuals?

A. the sum of square residuals is what I truly care about when
predicting # positive COVID cases

B. because it’s easy to find the w that minimizes it
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Least squares fitting

rewrite using linear algebra:

I form vector y ∈ Rn: each outcome yi is an entry of y

I form matrix X ∈ Rn×d : each example xi is a row of X

I rewrite error:

n∑
i=1

(ri )
2 =

n∑
i=1

(yi − w>xi )
2 = ‖y − Xw‖2

interpretation:

I Xw is a linear combination of the columns of X

I we seek the linear combination that best matches y
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Evaluating least squares: computational complexity

Real numbers are generally represented as floating point
numbers on a computer.

Definition

A floating point operation (flop) adds, multiplies, subtracts, or
divides two floating point numbers.

example: to check objective value of w

‖y − Xw‖2

requires 2nd flops
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Poll

How many flops to compute 3 ∗ 2 + 4 ∗ 6?

A. 2

B. 3

C. 4

D. 5
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Poll

How many flops to compute uT v , where u = (3, 4) and
v = (2, 6)?

A. 2

B. 3

C. 4

D. 5
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Poll

How many flops to compute uT v , where u, v ∈ Rd?

A. d-1

B. d

C. d+1

D. 2d-1

E. 2d
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Poll

How many flops to compute Xw , where X ∈ Rn×d , w ∈ Rd?

A. n+2d-1

B. 2n+2d-1

C. 2nd

D. n(2d-1)

E. 2n(2d-1)
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Poll

How many flops to compute y − z , where y , z ∈ Rn?

A. n-1

B. n

C. n+1

D. 2n-1

E. 2n
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Poll

How many flops to compute ‖y‖2, where y ∈ Rn?

A. n-1

B. n

C. n+1

D. 2n-1

E. 2n

note ‖y‖2 = yT y
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Add it up!

To compute ‖y − Xw‖2,

I n(2d − 1) = O(nd) flops to compute Xw

I n = O(n) flops to compute y − Xw

I 2n − 1 = O(n) flops to compute ‖y − Xw‖2

= 2nd − n + n + 2n − 1 = 2nd + 2n − 1 = O(nd)
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Outline

Regression

Gradient descent

Least squares via gradient descent

Faster!

Proofs for GD

Least squares via normal equations

QR
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Optimization

in this lecture, we will see two methods to solve the problem

minimize f (w)

with w ∈ Rn when f is differentiable

1. gradient descent

2. solve normal equations

when f is convex, both methods provably find the solution

example: for least squares, f (w) = ‖y − Xw‖2
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The gradient

the gradient ∇f (w) generalizes the derivative.

Definition

for w ∈ Rd , f : Rd → R differentiable,

∇f (w) =

(
∂f

∂w1
, . . . ,

∂f

∂wd

)
∈ Rd

I allows easy computation of directional derivatives:
for fixed v ∈ Rd , let w+(α) = w + αv . then

d

dα
f (w+(α)) =

∂f

∂w+
1

dw+
1

dα
+ · · ·+ ∂f

∂w+
d

dw+
d

dα

= (∇f (w))>v

I locally approximates f (w):

f (w + αv) ≈ f (w) + α(∇f (w))>v
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The gradient

f (w + αv) ≈ f (w) + α(∇f (w))>v

Q: From the point w , which direction v should we travel in to
make f (w) increase as fast as possible?

A: In the direction v = ∇f (w), to maximize (∇f (w))>v

Q: From the point w , which direction v should we travel in to
make f (w) decrease as fast as possible?
A: In the direction v = −∇f (w)
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Demo: gradient descent

let’s verify these properties of gradients numerically
https://github.com/ORIE4741/demos/blob/master/

gradient_descent.ipynb
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Gradient descent

minimize f (w)

idea: go downhill to get to a (the?) minimum!

Algorithm Gradient descent

Given: f : Rd → R, stepsize α, maxiters
Initialize: w = 0 (or anything you’d like)
For: k = 1, . . . ,maxiters

I update w :
w ← w − α∇f (w)

31 / 70



Gradient descent

minimize f (w)

Algorithm Gradient descent

Given: f : Rd → R, maxiters
Initialize: w = 0 (or anything you’d like)
For: k = 1, . . . ,maxiters

I choose stepsize α(k)

I update w :

w (k) = w (k−1) − α(k)∇f (w (k−1))

nomenclature

I w (k) ∈ Rd are called iterates
I α(k) ∈ R are called step-sizes
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Gradient descent: choosing a step-size

I constant step-size. α(k) = α (constant)

I decreasing step-size. α(k) = 1/k

I line search. try different possibilities for α(k) until
objective at new iterate

f (w (k)) = f (w (k−1) − α(k)∇f (w (k−1)))

decreases enough.

tradeoff: evaluating f (w) takes O(nd) flops each time . . .
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Line search

define w+ = w − α∇f (w)

I exact line search: find α to minimize f (w+)
I the Armijo rule requires α to satisfy

f (w+) ≤ f (w)− cα‖∇f (w)‖2

for some c ∈ (0, 1), e.g., c = .01.

a simple backtracking line search algorithm:

I set α = 1
I if step decreases objective value sufficiently, accept w+:

f (w+) ≤ f (w)− cα‖∇f (w)‖2 =⇒ w ← w+

otherwise, halve the stepsize α← α/2 and try again

Q: can we can always satisfy the Armijo rule for some α?
A: yes! see gradient descent demo
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Outline

Regression

Gradient descent

Least squares via gradient descent

Faster!

Proofs for GD

Least squares via normal equations

QR
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Some matrix calculus identities

two useful identities: let w , b ∈ Rd , A ∈ Rd×d symmetric

1. let f (w) = w>b. Then

∇f (w) = b

2. let f (w) = w>Aw . Then

∇f (w) = 2Aw

verify:

I take partial derivatives wrt each entry of w

I concatenate to get the matrix calculus result
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Gradient of the least squares problem

f (w) =
n∑

i=1

(yi − wT xi )
2

compute ∇f (w):

∇f (w) =
n∑

i=1

∇(yi − wT xi )
2

=
n∑

i=1

−2(yi − wT xi )xi
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Gradient of the least squares problem (matrix version)

f (w) = ‖y − Xw‖2

compute ∇f (w):

∇f (w) = ∇(y − Xw)>(y − Xw)

= ∇(y>y − w>X>y − y>Xw + w>X>Xw)

= −∇(w>X>y + w>X>y) +∇(w>X>Xw)

= −2X>y + 2X>Xw
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Solving the least squares problem: gradient descent

minimize ‖y − Xw‖2

Algorithm Gradient descent for least squares

Given: X : Rn×d , y ∈ Rn, stepsize α, maxiters
Initialize: w = 0 (or anything you’d like)
For: k = 1, . . . ,maxiters

I update w :
w ← w + 2α(X>y − X>Xw)

39 / 70



Poll

Gradient descent update:

w ← w + 2α(X>y − X>Xw)

How many flops does gradient descent require per iteration, as a
function of the number of examples n and number of features
d?

A. O(d)

B. O(n)

C. O(nd)

D. O(nd2)

E. O(n2d2)

compute it as w + 2α(X>y − X>(Xw))

40 / 70
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Demo: gradient descent for least squares

https://github.com/ORIE4741/demos/blob/master/

Gradient%20descent.ipynb
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Outline

Regression

Gradient descent

Least squares via gradient descent

Faster!

Proofs for GD

Least squares via normal equations

QR
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Speeding up gradient descent when n� d

w+ = w + 2α(X>y − X>Xw)

to compute this quickly when n� d :

I form Gram matrix G = X>X =
∑n

i=1 xix
>
i (2nd2 flops)

I form b = X>y =
∑n

i=1 yixi (2nd flops)
I for k = 1, . . .

I update w+ = w − 2α(Gw − b) (2d2 + 3d flops)

O(nd2) flops to start, plus O(d2) per iteration
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Parallel computation

I flops/core is constant over the last decade
I clock speed is roughly 1GHz: 109 cycles per second
I processors do 2–32 flops per cycle

I cores/$ and cores/computer are still increasing
I your laptop: 4–16 cores
I my server: 80 cores
I NVIDIA GPUs: 1000s of cores

Q: Can we use parallelism to speed up gradient descent?
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Parallelism: gradient descent

w+ = w + 2α(X>y − X>Xw)

suppose we have P processors. let {Nj}Pj=1 partition {1, . . . , n}.

I form the Gram matrix G = X>X =
∑P

p=1(
∑

i∈Np
xix
>
i )

(2nd2/P flops per proc)

I form b = X>y =
∑P

p=1(
∑

i∈Np
yixi )

(2nd/P flops per proc)
I for k = 1, . . .

I update w+ = w − 2α(Gw − b) (2d2 + 3d flops)

O(nd2) flops per proc to start, plus O(d2) per iteration
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Stochastic gradients?

I computing the gradient is slow

I idea: approximate the gradient!

a stochastic gradient ∇̃f (w) is a random variable with

E∇̃f (w) = ∇f (w)
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Stochastic gradient: examples

stochastic gradient obeys E∇̃f (w) = ∇f (w)

examples: for f (w) =
∑n

i=1(yi − wT xi )
2,

I single stochastic gradient. pick a random example i . set

∇̃f (w) = n∇(yi − wT xi )
2 = −2n(yi − wT xi )xi

I minibatch stochastic gradient.
pick a random set of examples S . set

∇̃f (w) =
n

|S |
∇

(∑
i∈S

(yi − wT xi )
2

)

=
n

|S |

(
−2
∑
i∈S

(yi − wT xi )xi

)
(often, |S | = 50 or so.)
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Stochastic gradient method for least squares

minimize ‖y − Xw‖2

Algorithm Stochastic gradient method for least squares

Given: X : Rn×d , y ∈ Rn, stepsize α, maxiters
Initialize: w = 0 (or anything you’d like)
For: k = 1, . . . ,maxiters

I pick i at random from {1, . . . , n}
I update w :

w ← w + 2αn(yi − wT xi )xi

I not a descent method; objective can increase!
I can’t use linesearch
I converges to ball around optimum;

bigger α =⇒ larger ball
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Stochastic gradient method for least squares

minimize ‖y − Xw‖2

Algorithm Stochastic gradient method for least squares

Given: X : Rn×d , y ∈ Rn, stepsize α, maxiters
Initialize: w = 0 (or anything you’d like)
For: k = 1, . . . ,maxiters

I pick a random subset S from {1, . . . , n}
I update w :

w ← w +
2αn

|S |
∑
i∈|S |

(yi − wT xi )xi
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Poll

Stochastic gradient update:

w ← w +
2αn

|S |
∑
i∈|S |

(yi − wT xi )xi

How many flops does stochastic gradient require per iteration,
as a function of the number of examples n and number of
features d?

A. O(d2)

B. O(|S |2)

C. O(dn)

D. O(d |S |)
E. O(nd2)
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Demo: SGD

https://github.com/ORIE4741/demos/blob/master/

gradient_descent.ipynb
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Proofs for GD
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Convexity: definitions

Q: Define convexity?
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Convexity: definitions

I A function f : Rn → R is convex iff
it never lies above its chord: for all θ ∈ [0, 1], w , v ∈ Rn

f (θw + (1− θ)v) ≤ θf (w) + (1− θ)f (v)

I A differentiable function f : Rn → R is convex iff
it satisfies the first order condition

f (v)− f (w) ≥ ∇f (w)>(v − w) ∀w , v ∈ Rn

I A twice differentiable function f : Rn → R is convex iff
its Hessian is always positive semidefinite: λmin(∇2f ) ≥ 0
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Poll: Convexity examples

Is this function convex?

A. yes

B. no
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Convex function: global proof of optimality

Theorem

For a convex and differentiable function,

∇f (w) = 0 ⇐⇒ w minimizes f .

proof:

if ∇f (x), then the first order condition says

f (y)− f (x) ≥ ∇f (x)>(y − x) = 0 ∀x , y ∈ Rn

Q: Counterexample for nonconvex function?
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Least squares objective is convex

Theorem

The least squares objective f (w) = ‖y − Xw‖2 is convex.

proof: consider any two models w and w ′.
use the first order condition for convexity:

f (w ′)− f (w) ≥ (∇f (w))>(w ′ − w)

compute

f (w ′)− f (w) = ‖y − Xw ′‖2 − ‖y − Xw‖2

= y>y − 2y>Xw ′ + w ′>X>Xw ′ − y>y + 2y>Xw − w>X>Xw

= −2y>X (w ′ − w) + w ′>X>X (w ′ − w) + w>X>X (w ′ − w)

= −2y>X (w ′ − w) + (w ′ − w)>X>X (w ′ − w) + 2w>X>X (w ′ − w)

= −2y>X (w ′ − w) + ‖X (w ′ − w)‖2 + 2w>X>X (w ′ − w)

≥ (−2y>X + 2w>X>X )(w ′ − w)

= (∇f (w))>(w ′ − w) 57 / 70



Least squares is smooth

Definition

A continuously differentiable function f : R→ R is L-smooth if,
for all w , w ′ ∈ R,

f (w ′) ≤ f (w) + (∇f (w))T (w ′ − w) +
L

2
‖w ′ − w‖2.

claim: the least squares objective f (w) = ‖Xw − y‖2 is
L-smooth for L = 2‖X‖2

proof:

f (w ′) = ‖Xw ′ − y‖2

= ‖X (w ′ − w) + Xw − y‖2

= ‖Xw − y‖2 + 2(Xw − y)TX (w ′ − w) + ‖X (w ′ − w)‖2

= f (w) + (∇f (w))T (w ′ − w) + ‖X (w ′ − w)‖2

≤ f (w) + (∇f (w))T (w ′ − w) + ‖X‖2‖(w ′ − w)‖2

so L = 2‖X‖2, where ‖X‖ is the maximum singular value of X
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Gradient descent converges when α ≤ 2/L

claim: gradient descent converges for an L-smooth function
f : R→ R if the step size α ≤ 2/L.
proof: f is L-smooth, so

f (w+) ≤ f (w) + (∇f (w))T (w+ − w) +
L

2
‖w+ − w‖2.

now use w+ − w = −α∇f (w):

f (w+) ≤ f (w) + (∇f (w))T (−α∇f (w)) +
L

2
‖ − α∇f (w)‖2

≤ f (w)− α‖∇f (w)‖2 +
Lα2

2
‖∇f (w)‖2

so f (w+) < f (w) when

−α +
Lα2

2
< 0 =⇒ α < 2/L

59 / 70



Outline

Regression

Gradient descent

Least squares via gradient descent

Faster!

Proofs for GD

Least squares via normal equations

QR

60 / 70



Solving least squares: straight to the bottom

minimize ‖y − Xw‖2

I solve by setting the gradient to 0: optimal w satisfies

0 = ∇‖y − Xw‖2

= −2X>y + 2X>Xw

X>Xw = X>y

I X>X is called the Gram matrix

I X>Xw = X>y is called the normal equations

Normal equations are very useful for understanding solution of
least squares;
when d is small, they are also useful for solving least squares.
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Any solution to normal equations solves least squares

claim: X>Xw = X>y ⇐⇒ w is optimal
proof: using first order condition,

‖y − Xw ′‖2 − ‖y − Xw‖2 ≥ (∇w‖y − Xw‖2)>(w ′ − w)

I if ∇w‖y − Xw‖2 = 0, then for any w ′,

‖y − Xw ′‖2 − ‖y − Xw‖2 ≥ 0

I so w minimizes ‖y − Xw‖2!
I rewrite ∇w‖y − Xw‖2 = 0 to get normal equations

0 = ∇w‖y − Xw‖2

= −2X>y + 2X>Xw

X>Xw = X>y
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The fundamental theorem of numerical analysis

Theorem

Never form the inverse (or pseudoinverse) of a matrix explicitly.

(Numerically unstable.)

Corollary: never type inv(X’*X) or pinv(X’*X) to solve the
normal equations.

Instead: compute the inverse using easier matrices to invert, like

I Orthogonal matrices Q:

a = Qb ⇐⇒ QTa = b

I Triangular matrices R:
if a = Rb, can find b given R and a by solving sequence of
simple, stable equations.
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The QR factorization

rewrite X in terms of QR decomposition X = QR

I Q ∈ Rn×d has orthogonal columns: Q>Q = Id
I R ∈ Rd×d is upper triangular: Rij = 0 for i > j

I diagonal of R ∈ Rd×d is positive: Rii > 0 for i = 1, . . . , d

I this factorization always exists and is unique
(proof by Gram-Schmidt construction)

can compute QR factorization of X in 2nd2 flops

use scipy.linalg.qr:

Q, R = qr (X)

advantage of QR: it’s easy to invert R!
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QR for least squares

use QR to solve least squares: if X = QR,

X>Xw = X>y

(QR)>QRw = (QR)>y

R>Q>QRw = R>Q>y

R>Rw = R>Q>y

Rw = Q>y

w = R−1Q>y
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Computational considerations

never form the inverse explicitly: numerically unstable!

instead, use QR factorization:

I compute QR factorization of X (2nd2 flops)

I to compute w = R−1Q>y
I form b = Q>y (2nd flops)
I compute w = R−1b by back-substitution (d2 flops)

in julia (or matlab), the backslash operator solves least-squares
efficiently (usually, using QR)

w = X \ y

in python, use numpy.lstsq
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Demo: QR

https://github.com/ORIE4741/demos/QR.ipynb
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Computational speed comparison

GD SGM Gram GD Parallel GD QR
initial 0 0 nd2 nd2/P nd2

per iter nd |S |d d2 d2 0

(numbers in flops, omitting constants)
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