ORIE 4741: Learning with Big Messy Data

Linear Models and Linear Least Squares

Professor Udell

Operations Research and Information Engineering
Cornell

October 16, 2021

1/70

v

vVvyyvyy

Announcements 9/7/21

section this week: python for data science (seaborn and
pandas)

hwl is out, due next week
missed the quiz? set a reminder for this week!
private question? ask @staff on Zulip

| will announce when you can register physical iClicker on
Canvas. ..

2/70

Announcements 9/9/21

» column (3,4) vs row [3, 4] vectors

» start looking for project groups: post your idea on zulip in
the #project channel

3/70

vVvyVvYyy

v

Announcements 9/14/21

section this week: github + jupyter tutorial
bonus section from last year: linear algebra review
hwl is out, due this Thursday at 9:15am

form project groups by this Sunday. see https://people.

orie.cornell.edu/mru8/orie4741/projects.html

looking for a project group? post your idea on zulip in the
#project channel

4/70

https://people.orie.cornell.edu/mru8/orie4741/projects.html
https://people.orie.cornell.edu/mru8/orie4741/projects.html

Poll

How many Cornell students tested positive for COVID
yesterday?
A 2
6
13
27
233

moU O

5/70

Poll

Did your iClicker record your participation for last lecture
9/9/217

A. yes

B. no

6/70

Poll

Questions about homework 1 should be posted on Zulip

A. in the #general channel, with a topic like “homework”

B. in the #homework 1 channel, with a topic like “q3c
ambiguous wording”

7/70

Poll

Can we see examples of good projects from previous years?

A. yes
B. no

8/70

Outline

Regression

9/70

Supervised learning setup

» input space X
» x € X is called the covariate, feature, or independent
variable

» output space Y

> y € Y is called the response, outcome, label, or
dependent variable

» given D = {(x1,y1),- -, (Xn, ¥n)}
» D is called the data, examples, observations, samples or
measurements

» we will find some h € H so that (we hope!)

h(x))~yi, i=1,....n

10/70

Supervised learning

different names for different YVs:
» classification: J = {—1,1}
> regression:) = R
» multiclass classification:) = {car, pedestrian, bike}

» ordinal regression:
Y = {strongly disagree, ..., strongly agree}

11/70

Regression

examples where) = R:

» predict credit score of applicant
» predict temperature in lthaca a year from today
» predict travel time at rush hour

» predict # positive COVID cases at Cornell tomorrow

12/70

Regression

examples where) = R:

» predict credit score of applicant
» predict temperature in lthaca a year from today
» predict travel time at rush hour

» predict # positive COVID cases at Cornell tomorrow

careful: are all real number valid predictions?

12/70

Linear model for regression

suppose ¥ =RY, Y =R

> predict y using a linear function h: RY — R
h(x) = w'x

> we want h(x;) ~ y; forevery i=1,...,n

13/70

Linear model++

suppose X = anything, JV =R

> pick a transformation ¢ : X — R
» predict y using a linear function of ¢(x)

h(x) = w' é(x)

> we want h(x;) ~ y; forevery i=1,...,n

14 /70

Linear model++

suppose X = anything, JV =R

> pick a transformation ¢ : X — R
» predict y using a linear function of ¢(x)

h(x) = w' é(x)
> we want h(x;) ~ y; forevery i=1,...,n
choices:

» how to pick ¢?
» how to pick w?

14 /70

Linear model++

suppose X = anything, JV =R
> pick a transformation ¢ : X — R
» predict y using a linear function of ¢(x)
h(x) = w' ¢(x)
> we want h(x;) ~ y; forevery i=1,...,n
choices:

» how to pick ¢?
» how to pick w?

for now, assume d and ¢ are fixed; we'll return to these later. ..

14 /70

Least squares fitting

» define prediction error or residual
ri = y; — h(x;), i=1,...,n

» choose w to minimize sum of square residuals

n n n

S =D (i — b)) = (yi — w'x)?

i=1 i=1 i=1

15/70

Poll

Why minimize the sum of square residuals?

A. the sum of square residuals is what | truly care about when
predicting # positive COVID cases

B. because it's easy to find the w that minimizes it

16 /70

Least squares fitting

rewrite using linear algebra:

» form vector y € R": each outcome y; is an entry of y
> form matrix X € R™9: each example x; is a row of X

> rewrite error:

() Z(y, w2 = ly = Xwl?
i=1

interpretation:

» Xw is a linear combination of the columns of X

» we seek the linear combination that best matches y

17/70

Evaluating least squares: computational complexity

Real numbers are generally represented as floating point
numbers on a computer.

Definition
A floating point operation (flop) adds, multiplies, subtracts, or
divides two floating point numbers.

example: to check objective value of w
ly = Xw|]?

requires 2nd flops

18/70

Poll

How many flops to compute 3 %2 4+ 4 x 67
A.

G wN

B
C.
D

19/70

Poll

How many flops to compute u” v, where u = (3,4) and
v=1(2,6)7

A

O N0 W,
g A W N

20/70

Poll

How many flops to compute u” v, where u, v € R?

A. d-1
d
d+1
. 2d-1
2d

mUnw

21/70

Poll

How many flops to compute Xw, where X € R™9, w e R9?

A. n42d-1
2n+2d-1
2nd
n(2d-1)
2n(2d-1)

moUnNw

22/70

Poll

How many flops to compute y — z, where y, z € R"?
A. n-1

n

n—+1

. 2n-1

2n

mUnw

23/70

Poll

How many flops to compute ||y||?, where y € R"?

A. n-1
n
n—+1
. 2n-1
2n

mUnw

24/70

Poll

How many flops to compute ||y||?, where y € R"?

A. n-1
n
n—+1
. 2n-1
2n

mUnw

note [lyl|> =y Ty

24/70

Add it up!

To compute |ly — Xw/?,

25/70

Add it up!

To compute |ly — Xw/?,
» n(2d — 1) = O(nd) flops to compute Xw

25/70

Add it up!

To compute |ly — Xw/?,

» n(2d — 1) = O(nd) flops to compute Xw
» n = O(n) flops to compute y — Xw

25/70

Add it up!

To compute |ly — Xw/?,
» n(2d — 1) = O(nd) flops to compute Xw
» n = O(n) flops to compute y — Xw
» 2n— 1= O(n) flops to compute |y — Xw||?

25/70

Add it up!

To compute |ly — Xw/?,

» n(2d — 1) = O(nd) flops to compute Xw

» n = O(n) flops to compute y — Xw

» 2n— 1= O(n) flops to compute |y — Xw||?
=2nd—n+n+2n—1=2nd +2n—-1= 0O(nd)

25/70

Outline

Gradient descent

26/70

Optimization

in this lecture, we will see two methods to solve the problem
minimize f(w)
with w € R" when f is differentiable

1. gradient descent

2. solve normal equations

when f is convex, both methods provably find the solution

27 /70

Optimization

in this lecture, we will see two methods to solve the problem
minimize f(w)
with w € R" when f is differentiable

1. gradient descent

2. solve normal equations

when f is convex, both methods provably find the solution

example: for least squares, f(w) = |y — Xw||?

27 /70

The gradient

the gradient Vf(w) generalizes the derivative.
Definition
for w € RY, f : R? — R differentiable,

N A

28/70

The gradient

the gradient Vf(w) generalizes the derivative.
Definition
for w € RY, f : R? — R differentiable,

N A

» allows easy computation of directional derivatives:
for fixed v € R?, let wt(a) = w 4 av. then

+ d +

9 fwta)) = iﬁdﬁ i’lﬂ

da ow, da ow, da
= (VF(w)'v

28/70

The gradient

the gradient Vf(w) generalizes the derivative.
Definition
for w € RY, f : R? — R differentiable,

N A

» allows easy computation of directional derivatives:
for fixed v € R?, let wt(a) = w 4 av. then

+ d +
da ow,” da ow, da
= (VF(w)'v

» locally approximates f(w):

f(w+av) =~ f(w) +a(VF(w)) v

28/70

The gradient

f(lw+av) = f(w)+ a(Vf(W))Tv

Q: From the point w, which direction v should we travel in to
make f(w) increase as fast as possible?

29/70

The gradient

f(lw+av) = f(w)+ a(Vf(W))Tv

Q: From the point w, which direction v should we travel in to
make f(w) increase as fast as possible?
A: In the direction v = Vf(w), to maximize (Vf(w)) v

29/70

The gradient

f(lw+av) = f(w)+ a(Vf(W))Tv

Q: From the point w, which direction v should we travel in to
make f(w) increase as fast as possible?
A: In the direction v = Vf(w), to maximize (Vf(w)) v

Q: From the point w, which direction v should we travel in to
make f(w) decrease as fast as possible?

29/70

The gradient

f(lw+av) = f(w)+ a(Vf(W))Tv

Q: From the point w, which direction v should we travel in to
make f(w) increase as fast as possible?
A: In the direction v = Vf(w), to maximize (Vf(w)) v

Q: From the point w, which direction v should we travel in to
make f(w) decrease as fast as possible?
A: In the direction v = —Vf(w)

29/70

Demo: gradient descent

let's verify these properties of gradients numerically
https://github.com/0RIE4741/demos/blob/master/
gradient_descent.ipynb

30/70

https://github.com/ORIE4741/demos/blob/master/gradient_descent.ipynb
https://github.com/ORIE4741/demos/blob/master/gradient_descent.ipynb

Gradient descent

minimize f(w)

idea: go downhill to get to a (the?) minimum!

Algorithm Gradient descent

Given: f : R - R, stepsize o, maxiters
Initialize: w = 0 (or anything you'd like)
For: k=1,..., maxiters
» update w:
w < w —aVi(w)

31/70

Gradient descent

minimize f(w)

Algorithm Gradient descent

Given: f : RY — R, maxiters
Initialize: w = 0 (or anything you'd like)
For: k =1,... maxiters

> choose stepsize a/(k)

» update w:

W) = W=D _ (g (k1))

nomenclature

> w(k) e RY are called iterates

> oK) R are called step-sizes
32/70

Gradient descent: choosing a step-size

> constant step-size. ol¥) = o (constant)

> decreasing step-size. oK) =1/k

> line search. try different possibilities for a(¥) until
objective at new iterate

F(wR)) = F(wkD — oV (k1))

decreases enough.

tradeoff: evaluating f(w) takes O(nd) flops each time ...

33/70

Line search

define wt = w — aVf(w)

> exact line search: find o to minimize f(w™)
» the Armijo rule requires « to satisfy

F(w) < f(w) — ca| VA(w)||?

for some ¢ € (0,1), e.g., c = .0L.

34/70

Line search

define wt = w — aVf(w)

> exact line search: find o to minimize f(w™)
» the Armijo rule requires « to satisfy

F(w®) < f(w) — ca|| VF(w)|?
for some ¢ € (0,1), e.g., c = .0L.

a simple backtracking line search algorithm:

> seta=1
> if step decreases objective value sufficiently, accept w:

f(wh) < f(w) — cal| VF(W)|? = ww'

otherwise, halve the stepsize o < «/2 and try again

34/70

Line search

define wt = w — aVf(w)

> exact line search: find o to minimize f(w™)
» the Armijo rule requires « to satisfy

F(w®) < f(w) — ca|| VF(w)|?
for some ¢ € (0,1), e.g., c = .01

a simple backtracking line search algorithm:

> seta=1

> if step decreases objective value sufficiently, accept w:

f(wh) < f(w) —ca|VIW)|? = w«w'
otherwise, halve the stepsize o < «/2 and try again

Q: can we can always satisfy the Armijo rule for some «?

34/70

Line search
define wt = w — aVf(w)

> exact line search: find o to minimize f(w™)
» the Armijo rule requires « to satisfy

F(w®) < f(w) — ca|| VF(w)|?
for some ¢ € (0,1), e.g., c = .01

a simple backtracking line search algorithm:

> seta=1

> if step decreases objective value sufficiently, accept w:

f(wh) < f(w) —ca|VIW)|? = w«w'
otherwise, halve the stepsize o < «/2 and try again

Q: can we can always satisfy the Armijo rule for some «?
A: yes! see gradient descent demo

34/70

Outline

Least squares via gradient descent

35/70

Some matrix calculus identities

two useful identities: let w, b € RY, A € R9*Y symmetric

1. let f(w) =w'"b. Then
Vf(w)=b
2. let f(w) = w' Aw. Then
Vi(w) = 2Aw

verify:

» take partial derivatives wrt each entry of w

» concatenate to get the matrix calculus result

36 /70

Gradient of the least squares problem

compute V£ (w):

Viw) = Y V(i—w'x)
i=1

=) 2y —wxi)x

i=1

37/70

Gradient of the least squares problem (matrix version)

F(w) = |ly — Xw]®

compute Vf(w):

VE(w) = V(y—Xw) (y — Xw)

Viy'y—w ' XTy —yTXw+w' X" Xw)
—Vw'XTy +w'XTy) + V(w' X" Xw)
= 2XTy+2X"Xw

38/70

Solving the least squares problem: gradient descent

minimize [ly — Xw/]?

Algorithm Gradient descent for least squares
Given: X : R"™<9 y € R", stepsize «, maxiters
Initialize: w = 0 (or anything you'd like)

For: k=1,..., maxiters

» update w:
w w+2a(X Ty — X Xw)

39/70

Poll

Gradient descent update:

w w4 2a(X Ty — XT Xw)

How many flops does gradient descent require per iteration, as a
function of the number of examples n and number of features

d?

A.

mOU N

40/70

Poll

Gradient descent update:
w w4 2a(X Ty — XT Xw)

How many flops does gradient descent require per iteration, as a
function of the number of examples n and number of features
d?

A. O

mOU N
o

compute it as w + 2a(X Ty — X T (Xw))

40/70

Demo: gradient descent for least squares

https://github.com/0RIE4741/demos/blob/master/
Gradient’%20descent.ipynb

41/70

https://github.com/ORIE4741/demos/blob/master/Gradient%20descent.ipynb
https://github.com/ORIE4741/demos/blob/master/Gradient%20descent.ipynb

Outline

Faster!

42 /70

Speeding up gradient descent when n > d

wh =w+2a(X Ty — XTXw)

to compute this quickly when n > d:

43/70

Speeding up gradient descent when n > d

wh =w+2a(X Ty — XTXw)

to compute this quickly when n > d:

» form Gram matrix G = XX =37 x;x' (2nd? flops)

43/70

Speeding up gradient descent when n > d

wh =w+2a(X Ty — XTXw)

to compute this quickly when n > d:

» form Gram matrix G = XX =37 x;x' (2nd? flops)
> form b= X"y =" yix; (2nd flops)

43/70

Speeding up gradient descent when n > d

wh =w+2a(X Ty — XTXw)

to compute this quickly when n > d:

» form Gram matrix G = XX =37 x;x' (2nd? flops)

> form b= X"y =" yix; (2nd flops)
> fork=1,...
> update wt = w — 2a(Gw — b) (2d? + 3d flops)

O(nd?) flops to start, plus O(d?) per iteration

43/70

Parallel computation

44/70

Parallel computation

> flops/core is constant over the last decade

> clock speed is roughly 1GHz: 10° cycles per second
» processors do 2—32 flops per cycle

44 /70

Parallel computation

> flops/core is constant over the last decade
> clock speed is roughly 1GHz: 10° cycles per second
> processors do 2-32 flops per cycle

> cores/$ and cores/computer are still increasing

> your laptop: 4-16 cores
» my server: 80 cores
» NVIDIA GPUs: 1000s of cores

44 /70

Parallel computation

> flops/core is constant over the last decade

> clock speed is roughly 1GHz: 10° cycles per second
» processors do 2—32 flops per cycle

> cores/$ and cores/computer are still increasing

> your laptop: 4-16 cores
» my server: 80 cores
» NVIDIA GPUs: 1000s of cores

Q: Can we use parallelism to speed up gradient descent?

44 /70

Parallelism: gradient descent

wh =w+2a(XTy — X" Xw)

suppose we have P processors. let {/\fj}le partition {1,...,n}.

45 /70

Parallelism: gradient descent

wh =w+2a(XTy — XTXw)
suppose we have P processors. let {/\/j}f:l partition {1,...,n}.

> form the Gram matrix G = XX =Y. (3 p, X))
(2nd?/ P flops per proc)

45 /70

Parallelism: gradient descent

wh =w+2a(XTy — XTXw)

suppose we have P processors. let {/\/j}f:l partition {1,...,n}.

> form the Gram matrix G = XX =Y. (3 p, X))
(2nd?/ P flops per proc)

> formb=X"y = Zgzl(z,-ej\/p Yix;)
(2nd/ P flops per proc)

45 /70

Parallelism: gradient descent

wh =w+2a(XTy — XTXw)

suppose we have P processors. let {/\/j}f:l partition {1,...,n}.

> form the Gram matrix G = XX =Y. (3 p, X))
(2nd?/ P flops per proc)
> formb=X"y = Zgzl(z,-ej\/p Yixi)
(2nd/ P flops per proc)
> fork=1,...
> update wt = w — 2a(Gw — b) (2d? + 3d flops)

O(nd?) flops per proc to start, plus O(d?) per iteration

45 /70

Stochastic gradients?

» computing the gradient is slow

» idea: approximate the gradient!
a stochastic gradient Vf(w) is a random variable with

EVf(w) = Vf(w)

46 /70

Stochastic gradient: examples

stochastic gradient obeys EVf(w) = Vf(w)

examples: for f(w) =37 (yi — w'x)?,

47/70

Stochastic gradient: examples

stochastic gradient obeys EVf(w) = Vf(w)
examples: for f(w) =37 (yi — w'x)?,
» single stochastic gradient. pick a random example i. set

VE(w) = nV(yi — w’x)* = =2n(y; — w’ x;)x;

47/70

Stochastic gradient: examples

stochastic gradient obeys EVf(w) = Vf(w)
examples: for f(w) =37 (yi — w'x)?,
» single stochastic gradient. pick a random example i. set

VE(w) = nV(yi — w’x)* = =2n(y; — w’ x;)x;

» minibatch stochastic gradient.
pick a random set of examples S. set

Vi(w) = év (Z(YI - WTXi)2>

ieS
= 3 (22()/, w T x;)x ,)
| | ieS
(often, |S| =50 or so.)

47/70

Stochastic gradient method for least squares

minimize [y — Xw/]?

Algorithm Stochastic gradient method for least squares

Given: X : R"™<9 y € R", stepsize «, maxiters
Initialize: w = 0 (or anything you'd like)

For: k=1,..., maxiters
» pick i at random from {1,...,n}
» update w:

w < w + 2an(y; — WTX,-)X,-

» not a descent method; objective can increase!
can't use linesearch
» converges to ball around optimum;

bigger « = larger ball

v

48 /70

Stochastic gradient method for least squares

minimize [y — Xw/]?

Algorithm Stochastic gradient method for least squares
Given: X : R™9 y € R", stepsize «r, maxiters
Initialize: w = 0 (or anything you'd like)

For: k =1,... maxiters

» pick a random subset S from {1,...,n}
» update w:

2an
w<— w+ H Z(y’ — WTXi)Xi
i€|S|

49 /70

Poll

Stochastic gradient update:

2an
W w G Z(y,- —w'x)x;
i€|S]

How many flops does stochastic gradient require per iteration,
as a function of the number of examples n and number of
features d?

A. O(d?)

moU O
S)

50 /70

Demo: SGD

https://github.com/0RIE4741/demos/blob/master/
gradient_descent.ipynb

51/70

https://github.com/ORIE4741/demos/blob/master/gradient_descent.ipynb
https://github.com/ORIE4741/demos/blob/master/gradient_descent.ipynb

Outline

Proofs for GD

52/70

Convexity: definitions

Q: Define convexity?

53 /70

Convexity: definitions

» A function f : R” — R is convex iff
it never lies above its chord: for all € [0,1], w, v € R"

f(0w+ (1 —0)v) <Of(w)+ (1 —0)f(v)

54 /70

Convexity: definitions

» A function f : R” — R is convex iff
it never lies above its chord: for all € [0,1], w, v € R"

fOw+ (1 —0)v) < Of(w)+ (1 —0)f(v)

» A differentiable function f : R” — R is convex iff
it satisfies the first order condition

f(v) — f(w) > VFf(w) (v — w) Vw,v € R"

54 /70

Convexity: definitions

» A function f : R” — R is convex iff
it never lies above its chord: for all € [0,1], w, v € R"

fOw+ (1 —0)v) < Of(w)+ (1 —0)f(v)

» A differentiable function f : R” — R is convex iff
it satisfies the first order condition

f(v) — f(w) > VFf(w) (v — w) Vw,v € R"

» A twice differentiable function f : R" — R is convex iff
its Hessian is always positive semidefinite: \mi,(V2f) > 0

54 /70

Poll: Convexity examples

Is this function convex?

A. yes

B. no

55 /70

Convex function: global proof of optimality

Theorem
For a convex and differentiable function,

Vf(w) =0 <= w minimizes f.

proof:

56 /70

Convex function: global proof of optimality

Theorem
For a convex and differentiable function,

Vf(w) =0 <= w minimizes f.

proof: if Vf(x), then the first order condition says

fly) — f(x) > VFf(x) (y—x)=0 Vx,y € R"

56 /70

Convex function: global proof of optimality

Theorem

For a convex and differentiable function,

Vf(w) =0 <= w minimizes f.

proof: if Vf(x), then the first order condition says

fly) — f(x) > VFf(x) (y—x)=0 Vx,y € R"

Q: Counterexample for nonconvex function?

56 /70

Least squares objective is convex

Theorem

The least squares objective f(w) = ||y — Xw||? is convex.
proof: consider any two models w and w’.
use the first order condition for convexity:
fF(w') = f(w) = (VF(w))" (v — w)
compute
F(w') = f(w) = lly = Xw'|[> = |ly = Xw|®
=y Ty =2y TXW + W XX —y Ty +2y T Xw —w' XT Xw
= 2y X(W —w) + W TXTX(W = w)+w X X(W —w)

=2y T X(W —w)+ (W —w) T XTX(W —w)+ 2w ' XTX (W — w)

= 2y ' X(W — w)+ | X(W = w)|2+ 2w XTX(w — w)
> (=2y "X +2w ' XTX) (W — w)
= (VF(w)) (W — w)

57 /70

Least squares is smooth

Definition
A continuously differentiable function f : R — R is L-smooth if,
for all w, w’ € R,

F(w') < F(w) + (TF(w)) (W'~ w) + 5w

claim: the least squares objective f(w) = || Xw — y|? is
L-smooth for L = 2| X||?

58 /70

Least squares is smooth

Definition

A continuously differentiable function f : R — R is L-smooth if,
for all w, w’ € R,

F(w') < f(w) + (VF(w))T (W' = w) + éIIW’ - w|?.

claim: the least squares objective f(w) = || Xw — y||? is
L-smooth for L = 2||X||?
proof:

fw) = |Xw —y|?
= [X(w' —w) + Xw — y|*
IXw = y[I? + 2(Xw — y) "X (W' = w) + [X(w' — w)|?
= f(w) + (VW) (W' = w) + [X(w —)|
F(w) + (VF(w) (W' = w) + [X[P[[(w' = w)||?

so L = 2||X||?, where ||X|| is the maximum singular value of X

IN

58 /70

Gradient descent converges when o <2/L

claim: gradient descent converges for an L-smooth function
f : R — R if the step size a < 2/L.
proof: f is L-smooth, so

F(wh) < f(w) + (VEw) T (wh —w) + S w" —w|?.
now use wt —w = —aVf(w):

L
Fw?) < F(w)+ (VIW) (—aVF(w)) + 5| — aVF(w)]?
2 La? 2
< f(w) = o VEW)II" + —-[IVF(w)]

so f(w') < f(w) when

—a+7<0 = a<?2/L

59 /70

Outline

Least squares via normal equations

60 /70

Solving least squares: straight to the bottom

minimize [y — Xw/]?

» solve by setting the gradient to 0: optimal w satisfies

0 = Vly—Xwl|?
= 2XTy+2X"Xw
X' Xw = X'y

> XX is called the Gram matrix
> X' Xw = X"y is called the normal equations

61/70

Solving least squares: straight to the bottom

minimize [y — Xw/]?

» solve by setting the gradient to 0: optimal w satisfies

0 = Vly—Xwl|?
= 2XTy+2X"Xw
X' Xw = X'y

> XX is called the Gram matrix
> X' Xw = X"y is called the normal equations

Normal equations are very useful for understanding solution of
least squares;

when d is small, they are also useful for solving least squares.
61/70

Any solution to normal equations solves least squares

claim: X' Xw = X"y <= w is optimal
proof: using first order condition,

ly = Xw'|2 = lly = Xw|* > (Vwlly — Xw|*)" (' — w)

62/70

Any solution to normal equations solves least squares

claim: X' Xw = X"y <= w is optimal
proof: using first order condition,

ly = Xw'|2 = lly = Xw|* > (Vwlly — Xw|*)" (' — w)

» if V,,|ly — Xw||?> =0, then for any w/,
ly = Xw/|2 = Jly = Xw||* > 0

62/70

Any solution to normal equations solves least squares

claim: X' Xw = X"y <= w is optimal
proof: using first order condition,

ly = Xw'|2 = lly = Xw|* > (Vwlly — Xw|*)" (' — w)

» if V,,|ly — Xw||?> =0, then for any w/,
ly = Xw/|2 = Jly = Xw||* > 0

> so w minimizes ||y — Xw||?!

62/70

Any solution to normal equations solves least squares
claim: X' Xw = X"y <= w is optimal
proof: using first order condition,

ly = Xw'|2 = lly = Xw|* > (Vwlly — Xw|*)" (' — w)

» if V,,|ly — Xw||?> =0, then for any w/,
ly = Xw/|2 = Jly = Xw||* > 0

> so w minimizes ||y — Xw||?!

> rewrite V||y — XWH2 = 0 to get normal equations
0 = Vuly—Xw|?
= —2XTy+2XTXw
X' Xw = X'y

62 /70

QR

Outline

63/70

The fundamental theorem of numerical analysis

Theorem

Never form the inverse (or pseudoinverse) of a matrix explicitly.

(Numerically unstable.)

Corollary: never type inv (X’ *X) or pinv(X’*X) to solve the
normal equations.

64 /70

The fundamental theorem of numerical analysis

Theorem

Never form the inverse (or pseudoinverse) of a matrix explicitly.

(Numerically unstable.)

Corollary: never type inv (X’ *X) or pinv(X’*X) to solve the
normal equations.

Instead: compute the inverse using easier matrices to invert, like

» Orthogonal matrices Q:
a= Qb QTa =b

» Triangular matrices R:
if a= Rb, can find b given R and a by solving sequence of
simple, stable equations.

64 /70

The QR factorization

rewrite X in terms of QR decomposition X = QR
> Q e R™ has orthogonal columns: QT Q = Iy
» R e R is upper triangular: Rj=0fori>j
» diagonal of R € R¥*? is positive: Rj >0fori=1,...,d

» this factorization always exists and is unique
(proof by Gram-Schmidt construction)

can compute QR factorization of X in 2nd? flops

65 /70

The QR factorization

rewrite X in terms of QR decomposition X = QR

> Q e R™ has orthogonal columns: QT Q = Iy
» R e R is upper triangular: Rj=0fori>j

> diagonal of R € R?*? is positive: R >0fori=1,...

» this factorization always exists and is unique
(proof by Gram-Schmidt construction)

can compute QR factorization of X in 2nd? flops

use scipy.linalg.qr:
Q.R = qr(X)

advantage of QR: it's easy to invert R!

,d

65 /70

QR for least squares

use QR to solve least squares: if X = QR,

X T Xw
(QR)" QRw
R"QT QRw

R Rw

Rw

w

XTy
(QR)Ty
RTQTy
RTQTy
Q'y
R1QTy

66 /70

Computational considerations

never form the inverse explicitly: numerically unstable!

instead, use QR factorization:

» compute QR factorization of X (2nd? flops)
> to compute w = R~1QTy
> form b=Q'y (2nd flops)
> compute w = R~1h by back-substitution (d? flops)

67 /70

Computational considerations

never form the inverse explicitly: numerically unstable!

instead, use QR factorization:

» compute QR factorization of X (2nd? flops)
> to compute w = R~1QTy
> form b=Q'y (2nd flops)
> compute w = R~1h by back-substitution (d? flops)

in julia (or matlab), the backslash operator solves least-squares
efficiently (usually, using QR)

w=X\y

in python, use numpy.lstsq

67 /70

Demo: QR

https://github.com/0RIE4741/demos/QR.ipynb

6870

https://github.com/ORIE4741/demos/QR.ipynb

Computational speed comparison

| GD | SGM | Gram GD | Parallel GD | QR

initial
per iter

0 0 nd? nd?/P nd?
nd | |S|d d? d? 0

(numbers in flops, omitting constants)

69 /70

References

Stanford EE103: “Least squares” and “Least squares data
fitting”. Boyd, 2016.

Learning from Data: Chapter 3. Abu-Mostafa,
Magdon-Ismail, and Lin, 2012.

Gradient descent: https://www.cs.cmu.edu/~ggordon/
10725-F12/slides/05-gd-revisited.pdf. Gordon and
Tibshirani, CMU.

QR factorization:
https://en.wikipedia.org/wiki/QR_decomposition

70/70

https://www.cs.cmu.edu/~ggordon/10725-F12/slides/05-gd-revisited.pdf
https://www.cs.cmu.edu/~ggordon/10725-F12/slides/05-gd-revisited.pdf
https://en.wikipedia.org/wiki/QR_decomposition

	Regression
	Gradient descent
	Least squares via gradient descent
	Faster!
	Proofs for GD
	Least squares via normal equations
	QR

