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Announcements 9/30/21

I hw2 due Thursday morning 9:15am
I hw3 is out; do it early to enjoy Fall break

I save slip days for emergencies

I project proposals due Sunday 11:59pm
I final project must use at least 3 techniques from class

I section next week: generalization and validation
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Generalization and Overfitting

I goal of model is not to predict well on D
I goal of model is to predict well on new data

if the model has training set error and test set error,
we say the model:

low test set error high test set error

low training set error generalizes overfits
high training set error ?!?! underfits
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Simplest case: generalizing from a mean

exit polling

I sample n voters leaving polling places

I for each voter i , define the Boolean random variable

zi =

{
1 if voter i voted for Biden
0 otherwise

I sample mean: ν = 1
n

∑n
i=1 zi

I true mean: µ = Ei∼US electoratezi is Biden’s expected vote
share

Q: When does sample mean ν estimate true mean µ well?
A: (1) sample voters uniformly from all voters (2) n large!
Q: Why might these conditions fail to hold?
A: Absentee votes; failure to sample small or remote polling
places; voters who refuse to answer; limited polling resources
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Poll: true mean and sample mean

Suppose voters in our polling sample are uniformly sampled from
the set of all voters, and give truthful answers. The strong law
of large numbers states that sample mean converges to the true
mean

A. false

B. true

C. as the number of samples n→∞
D. as the number of voters in the US →∞
E. so long as the poll is conducted by a respectable

nonpartisan organization
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Hoeffding inequality

Theorem (Hoeffding Inequality)

Let zi ∈ {0, 1}, i = 1, . . . , n, be independent Boolean random
variables with mean Ezi = µ. Define the sample mean
ν = 1

n

∑n
i=1 zi . Then for any ε > 0,

P[|ν − µ| > ε] ≤ 2 exp
(
−2ε2n

)
.

an example of a concentration inequality

I µ can’t be much higher than ν

I µ can’t be much lower than ν

I more samples n improve estimate exponentially quickly
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Compare with law of large numbers

Theorem (Strong Law of Large Numbers)

Let zi ∈ R, i = 1, . . . , n, be independent random variables with
mean Ezi = µ. Define the sample mean ν = 1

n

∑n
i=1 zi . Then

ν → µ as n→∞

compare with the Hoeffding bound:

I the Hoeffding bound provides quantitative predictions on
how fast the sample mean ν concentrates near µ.

I the Hoeffding bound only holds for Boolean random
variables

I similar concentration inequalities (named, e.g., Azuma,
McDiarmid, Bennet, Bernstein, Chernoff, . . . ) hold for
other kinds of random variables
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Back to the learning problem

fix a hypothesis h : X → Y. take

zi =

{
1 yi = h(xi )

0 otherwise

= 1(yi = h(xi ))

example. build a model of voting behavior:

I yi is 1 if voter i voted for Biden, 0 otherwise

I h(xi ) is our guess of how the voter will vote, using
hypothesis h

I zi = 1(yi = h(xi )) is 1 if we guess correctly for voter i , 0
otherwise

I zi depends on xi , yi , and h
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Adding in probability

make our model probabilistic:

I fix a probability distribution P(x , y)

I sample (xi , yi ) iid1 from P(x , y)
I form data set D by sampling:

I for i = 1, . . . , n
I sample (xi , yi ) ∼ P(x , y)

I set D = {(x1, y1), . . . , (xn, yn)}

special case. y = f (x) is deterministic conditioned on x :

P(y |x) =

{
1 y = f (x)

0 otherwise

P(x , y) = P(x)P(y |x) =

{
P(x) y = f (x)

0 otherwise

1iid: independent and identically distributed
9 / 28
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Hoeffding for the noisy learning problem

I fix a hypothesis h : X → Y.

I draw samples (xi , yi ) iid from P(x , y) to form
D = {(x1, y1), . . . , (xn, yn)}

I take zi = 1(yi = h(xi ))

I zi are iid (since (xi , yi ) are iid, and h is fixed)

I Ez = E(x ,y)∼P(x ,y)1(y = h(x))

so we can apply Hoeffding! for any ε > 0,

P

[∣∣∣∣∣1n
n∑

i=1

zi − Ez

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2ε2n

)
Q: Probability? Where’s the randomness here?
A: The dataset D is random, drawn iid according to P(x , y)
Q: Is 1

n

∑n
i=1 zi more like training set error or test set error?

A: It’s more like test set error, since h is independent of D
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In-sample and out-of-sample error

some new terminology:

I in-sample error.

Ein(h) = fraction of D where yi and h(xi ) disagree

=
1

n

n∑
i=1

1(yi 6= h(xi ))

I out-of-sample error.

Eout(h) = probability that y and h(x) disagree

= P
(x ,y)∼P(x ,y)

[y 6= h(x)]

notice
Eout(h) = E [Ein(h)]

11 / 28



In-sample and out-of-sample error

some new terminology:

I in-sample error.

Ein(h) = fraction of D where yi and h(xi ) disagree

=
1

n

n∑
i=1

1(yi 6= h(xi ))

I out-of-sample error.

Eout(h) = probability that y and h(x) disagree

= P
(x ,y)∼P(x ,y)

[y 6= h(x)]

notice
Eout(h) = E [Ein(h)]

11 / 28



Hoeffding for the noisy learning problem

I fix a hypothesis h : X → Y.

I consider (xi , yi ) as samples drawn from P(x , y)

I take zi = 1(yi 6= h(xi ))

I zi are iid (since (xi , yi ) are iid, and h is fixed)

I Ez = E(x ,y)∼P(x ,y)1(y 6= h(x)) = Eout(h)

I 1
n

∑n
i=1 zi = 1

n

∑n
i=1 1(yi 6= h(xi )) = Ein(h)

apply Hoeffding: for any ε > 0,

P[|Ein(h)− Eout(h)| > ε] ≤ 2 exp
(
−2ε2n

)
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Does Hoeffding work for our learned model?

two scenarios:

1. Without looking at any data, pick a model h : X → Y to
predict who will vote for Biden. Then sample data
D = {(x1, y1), . . . , (xn, yn)}, and set zi = 1(yi = h(xi )).

2. Sample the data D = {(x1, y1), . . . , (xn, yn)}, and use it to
develop a model g : X → Y to predict who will vote for
Biden (e.g., using perceptron). Set z ′i = 1(yi = g(xi )).

Is the sample mean 1
n

∑n
i=1 zi a good estimate for the expected

performance Ez? Is 1
n

∑n
i=1 z

′
i a good estimate for Ez ′?
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Biden (e.g., using perceptron). Set z ′i = 1(yi = g(xi )).

Does the Hoeffding bound apply to the sample mean of the (iid)
zi s?

A. yes
B. no

Does the Hoeffding bound apply to the sample mean of the (not
iid) z ′i s?

A. yes
B. no
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2. Sample the data D = {(x1, y1), . . . , (xn, yn)}, and use it to
develop a model g : X → Y to predict who will vote for
Biden (e.g., using perceptron). Set z ′i = 1(yi = g(xi )).

Is the sample mean 1
n

∑n
i=1 zi a good estimate for the expected

performance Ez? Is 1
n

∑n
i=1 z

′
i a good estimate for Ez ′?

Q: Are the zi s iid? What about the z ′i s?
A: zi s are iid. z ′i s are not independent: they depend on g , which
depends on the whole data set D = {(x1, y1), . . . , (xn, yn)}.
Q: Does Hoeffding apply to the first? the second?
A: Hoeffding applies to first, not to second.
Extreme case for second scenario: model memorizes the data.
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Recall validation procedure

how to decide which model to use?

I split data into training set Dtrain and test set Dvalid

I pick m different interesting model classes
e.g., different φs: φ1, φ2, . . . , φm

I fit (“train”) models on training set Dtrain

get one model h : X → Y for each φs, and set

H = {h1, h2, . . . , hm}
I compute error of each model on test set Dvalid and choose

lowest:
g = argmin

h∈H
EDvalid

(h)

Q: Are {zi = 1(yi = g(xi ) : (xi , yi ) ∈ Dvalid)} independent?
A: No; g was trained on Dvalid!
Hoeffding does not directly apply:
EDvalid

(g) may not accurately estimate Eout(g)
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The union bound

recall the union bound: for two random events A and B,

P(A ∪ B) ≤ P(A) + P(B)
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Poll: the union bound

In Ithaca, the probability of rain on any given day is 30%. The
probability of sun on any given day is 50%. What is the
probability p that there will be sun or rain on any given day?

A. ≤ 30%: p ≤ .30

B. between 30% and 50%: p ∈ (.30, .50]

C. between 50% and 80%: p ∈ (.50, .80]

D. > 80%: p > 80
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Poll: when is the union bound tight?

In some other hypothetical city, the probability of rain on any
given day is 30%; the probability of sun on any given day is
50%; and the probability of sun or rain on any given day is 80%.
What can we say about the probability p that it will be sunny
and rain on the same day?

A. p = 0

B. p ∈ (0, .30]

C. p ∈ (.30, .50]

D. p ∈ (.50, .80]

E. p > .80

Q: More generally, when is the union bound tight? i.e., when is

P(A ∪ B) = P(A) + P(B)?
A: When A ∩ B = ∅
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Rescuing Hoeffding: the union bound

I let’s suppose H is finite, with m hypotheses in it
I the hypothesis g is one of those m hypotheses
I so if (given a data set D)

|Ein(g)− Eout(g)| > ε,

then for some h ∈ H, |Ein(h)− Eout(h)| > ε
I (g depends on the data set; we might choose different hs

for different data sets)

so

P[|Ein(g)− Eout(g)| > ε] ≤
∑
h∈H

P[|Ein(h)− Eout(h)| > ε]

≤
∑
h∈H

2 exp
(
−2ε2n

)
= 2m exp

(
−2ε2n

)
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Hoeffding for learning

we just proved that our learning algorithm generalizes!

Theorem (Generalization bound for learning)

Let g be a hypothesis chosen from among m different
hypotheses. Then

P[|Ein(g)− Eout(g)| > ε] ≤ 2m exp
(
−2ε2n

)
.

Q: do you think this bound is tight?
A: no, it can overcount badly. for random events A and B, if

P(A ∩ B) is large, then P(A ∪ B)� P(A) + P(B)

more information. look up the Vapnik-Chervoninkis (VC) dimension,

e.g., in Learning from Data, by Abu-Mostafa, Magdon-Ismail, and Lin.
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A tradeoff for learning

I we want H to be big to make Ein small

I we want H to be small to ensure Eout is close to Ein

what does this tell us about the difficulty of learning
complicated functions f ?
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Generalization for regression

Theorem (Generalization bound for learning)

Let g be a hypothesis chosen from among m different
hypotheses. Then

P[|Ein(g)− Eout(g)| > ε] ≤ 2m exp
(
−2ε2n

)
.

to apply Hoeffding to real-valued outputs:

I pick some small ε > 0

I 1((yi − h(xi ))2 ≥ ε)) is 0 if hypothesis h predicts well, 1 if
hypothesis h predicts poorly

I define error of hypothesis h on data set D as

ED(h) =
1

|D|
∑

(x ,y)∈D

1((y − h(x))2 ≤ ε)
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Recap

I we introduced a probabilistic framework for generating data

I we showed that the in-sample error predicts the
out-of-sample error for a single hypothesis

I we showed that the in-sample error predicts the
out-of-sample error for a learned hypothesis, when H is
finite

I we stopped there, because the math gets much more
complicated — but indeed, generalization is possible!

I the practical lesson: (especially for complex models),
don’t learn and estimate your error on the same data set
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in, out, train, test

I the training error does not obey the Hoeffding inequality

I the validation error obeys the Hoeffding inequality, with the
union bound: if we choose g as the best of m models on
the validation set,

P[|Evalid(g)− Eout(g)| > ε] ≤ 2m exp
(
−2ε2|Dvalid|

)
.

I the test error does obey the Hoeffding inequality

P[|Etest(g)− Eout(g)| > ε] ≤ 2 exp
(
−2ε2|Dtest|

)
.

so we can use the (validation error or) test error to predict
generalization
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Hoeffding for the validation set: details

if validation set is used for model selection, the validation error
obeys
the Hoeffding inequality with the union bound

I for each model family, optimal model trained on D is a
hypothesis h

I so finite number of models m =⇒ finite hypothesis space
H

I hypotheses h ∈ H are independent of validation set D′

I let gD′ be the hypothesis h ∈ H with lowest error on
validation set D′

I Hoeffding with union bound applies!

P[|ED′(gD′)− Eout(gD′)| > ε] ≤ 2m exp
(
−2ε2|D′|

)
.
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