Missing Value Imputation via Gaussian Copula

Yuxuan Zhao

ORIE 4741, Nov 11 2021

Why I am here today?

In your course project, it is very likely to run into missing data.

Why I am here today?

- In your course project, it is very likely to run into missing data.
- The missing data imputation method I introduce today can be simply used without selecting hyperparameters.
- ▶ The software can be easily installed and used.

Why I am here today?

- In your course project, it is very likely to run into missing data.
- The missing data imputation method I introduce today can be simply used without selecting hyperparameters.
- The software can be easily installed and used.
- We want to know if our method works well for your problem!

Table of Contents

Let's first see a general social survey dataset

	AGE	DEGREE	RINCOME	CLASS_	SATJOB	WEEKSWRK	HAPPY	HEALTH	SOCBAR
1	53.0	3	12.0	3.0	2.0	52.0	1.0	1.0	NaN
2	26.0	3	12.0	3.0	2.0	52.0	1.0	1.0	NaN
3	59.0	1	NaN	2.0	1.0	13.0	3.0	2.0	2.0
4	56.0	3	9.0	3.0	1.0	52.0	1.0	NaN	5.0
5	74.0	3	NaN	3.0	NaN	0.0	1.0	1.0	NaN

Figure 1: 2538 participants and 9 questions. 18.2% entries are missing in total.

Example variables

- Subjective class identification: If you were asked to use one of four names for your social class, which would you say you belong in: the lower class, the working class, the middle class, or the upper class?
- General happiness: Taken all together, how would you say things are these days-would you say that you are very happy, pretty happy, or not too happy?
- Respondents income: In which of these groups did your earnings from (OCCUPATION IN OCC) for last year–[the previous year]–fall? That is, before taxes or other deductions. Just tell me the letter.
- Weeks r. worked last year: In [the previous year] how many weeks did you work either full-time or part-time not counting work around the house-include paid vacations and sick leave?

Recap: GLRM imputes mixed data better than PCA

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

minimize
$$\sum_{(i,j)\in\Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^n r_i \left(x_i \right) + \sum_{j=1}^d \tilde{r}_j \left(w_j \right)$$

- ℓ_j can vary for different j.
- The regularizer for row r_i and column \tilde{r}_j can vary.

Recap: GLRM imputes mixed data better than PCA

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

minimize
$$\sum_{(i,j)\in\Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^n r_i \left(x_i \right) + \sum_{j=1}^d \tilde{r}_j \left(w_j \right)$$

• ℓ_j can vary for different j.

• The regularizer for row r_i and column \tilde{r}_j can vary.

Great flexibility usually means many choices to make...

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

minimize
$$\sum_{(i,j)\in\Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^n r_i \left(x_i \right) + \sum_{j=1}^d \tilde{r}_j \left(w_j \right)$$

► What ℓ_j to choose?

- How to assign weights to l_j when columns have different scales?
- What regularizer r_i , \tilde{r}_j to use?

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

minimize
$$\sum_{(i,j)\in\Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^n r_i \left(x_i \right) + \sum_{j=1}^d \tilde{r}_j \left(w_j \right)$$

• What ℓ_j to choose?

- How to assign weights to ℓ_j when columns have different scales?
- What regularizer r_i, r̃_j to use?

And there are tuning parameters...

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

minimize
$$\sum_{(i,j)\in\Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^n r_i \left(x_i \right) + \sum_{j=1}^d \tilde{r}_j \left(w_j \right)$$

- How to choose the rank k?
- If setting r_i and r̃_j as quadratic regularization with parameter λ, how to choose λ?

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

minimize
$$\sum_{(i,j)\in\Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^n r_i \left(x_i \right) + \sum_{j=1}^d \tilde{r}_j \left(w_j \right)$$

- How to choose the rank k?
- If setting r_i and r̃_j as quadratic regularization with parameter λ, how to choose λ?
- Need to search over two-dimensional grid.

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

minimize
$$\sum_{(i,j)\in\Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^n r_i \left(x_i \right) + \sum_{j=1}^d \tilde{r}_j \left(w_j \right)$$

- How to choose the rank k?
- If setting r_i and r̃_j as quadratic regularization with parameter λ, how to choose λ?
- Need to search over two-dimensional grid.

Is the problem just about computation?

GLRM: low rank assumption

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that XW approximates $Y \in \mathbb{R}^{n \times p}$ well:

minimize
$$\sum_{(i,j)\in\Omega} \ell_j \left(Y_{ij}, x_i^T w_j \right) + \sum_{i=1}^n r_i \left(x_i \right) + \sum_{j=1}^d \tilde{r}_j \left(w_j \right)$$

- Only works well when Y can be approximated by low rank matrix.
- Big data (large n and large p) usually have low rank structure.
 - Movie rating datasets: many movies and many users
- Long skinny data (large n and small p) usually does not have low rank structure.

Social survey data: many participants, few questions.

Get over the low rank assumption

- Large n allows learning more complex variable dependence than the low rank structure.
- Statistical dependence structure: model the joint distribution
 - Gaussian distribution for quantitative vector

Get over the low rank assumption

- Large n allows learning more complex variable dependence than the low rank structure.
- Statistical dependence structure: model the joint distribution
 - Gaussian distribution for quantitative vector
 - All 1-dimensional marginals are Gaussian
 - 2 The joint p-dimensional distribution is multivariate Gaussian

Get over the low rank assumption

- Large *n* allows learning more complex variable dependence than the low rank structure.
- Statistical dependence structure: model the joint distribution
 - Gaussian distribution for quantitative vector
 - All 1-dimensional marginals are Gaussian
 - 2 The joint p-dimensional distribution is multivariate Gaussian

First, can we use 1-dimensional Gaussian to model ordinal/binary variable?

Histograms for some GSS variables

Generate ordinal data by thresholding Gaussian variable

- Select thresholds to ensure desired class proportion.
- A mapping between ordinal levels and intervals.

•
$$f(z) = x$$
 for $z \in [a_x, a_{x+1})$ or $f^{-1}(x) = [a_x, a_{x+1})$.

Estimated thresholds for some GSS variables

How many people in contact in a typical week

 $\label{eq:Figure 2: Red vertical lines indicate estimated thresholds. \\ \end{tabular} Motivation$

Table of Contents

Gaussian copula model for mixed data

We say $x = (x_1, \ldots, x_p)$ follows the **Gaussian copula model** if

• marginals: $x = \mathbf{f}(z)$ for $\mathbf{f} = (f_1, \dots, f_p)$ entrywise monotonic,

$$x_j = f_j(z_j), \qquad j = 1, \ldots, p$$

• copula: $z \sim \mathcal{N}(0, \Sigma)$ with correlation matrix Σ

Gaussian copula model for mixed data

We say $x = (x_1, \ldots, x_p)$ follows the **Gaussian copula model** if

• marginals: $x = \mathbf{f}(z)$ for $\mathbf{f} = (f_1, \dots, f_n)$ entrywise monotonic,

$$x_j = f_j(z_j), \qquad j = 1, \ldots, p$$

- copula: $z \sim \mathcal{N}(0, \Sigma)$ with correlation matrix Σ
- Estimate f_j to match the observed empirical distribution
- Estimate Σ through an EM algorithm

Given parameter estimate, imputation is easy

Figure 3: Curves indicate density and dots mark the observation.

Given parameter estimate, imputation is easy

Figure 4: Curves indicate density and crosses mark the prediction.

Given parameter estimate, imputation is easy

Figure 5: Curves indicate density and crosses mark the prediction.

Given parameters, imputation is easy

- ▶ observed entries $\mathbf{x}_{\mathcal{O}}$ of new row $\mathbf{x} \in \mathbb{R}^{p}$, $\mathcal{O} \subset \{1, \dots, p\}$
- missing entries $\mathcal{M} = \{1, \dots, p\} \setminus \mathcal{O}$
- \blacktriangleright marginals $f = (f_{\mathcal{O}}, f_{\mathcal{M}})$ and copula correlation matrix Σ
- ▶ the truncated region: $\mathbf{z}_{\mathcal{O}} \in \mathbf{f}_{\mathcal{O}}^{-1}(\mathbf{x}_{\mathcal{O}}) := \prod_{j \in \mathcal{O}} f_j^{-1}(x_j)$

impute missing entries using normality of $\boldsymbol{z}_{\mathcal{M}}$:

▶ latent missing z_M are normal given z_O :

$$\textbf{z}_{\mathcal{M}}|\textbf{z}_{\mathcal{O}} \sim \mathcal{N}(\boldsymbol{\Sigma}_{\mathcal{M},\mathcal{O}}\boldsymbol{\Sigma}_{\mathcal{O},\mathcal{O}}^{-1}\textbf{z}_{\mathcal{O}},\boldsymbol{\Sigma}_{\mathcal{M},\mathcal{M}}-\boldsymbol{\Sigma}_{\mathcal{M},\mathcal{O}}\boldsymbol{\Sigma}_{\mathcal{O},\mathcal{O}}^{-1}\boldsymbol{\Sigma}_{\mathcal{O},\mathcal{M}})$$

Given parameters, imputation is easy

- ▶ observed entries $\mathbf{x}_{\mathcal{O}}$ of new row $\mathbf{x} \in \mathbb{R}^{p}$, $\mathcal{O} \subset \{1, \dots, p\}$
- missing entries $\mathcal{M} = \{1, \dots, p\} \setminus \mathcal{O}$
- \blacktriangleright marginals $f = (f_{\mathcal{O}}, f_{\mathcal{M}})$ and copula correlation matrix Σ
- ► the truncated region: $\mathbf{z}_{\mathcal{O}} \in \mathbf{f}_{\mathcal{O}}^{-1}(\mathbf{x}_{\mathcal{O}}) := \prod_{j \in \mathcal{O}} f_j^{-1}(x_j)$

impute missing entries using normality of $z_{\mathcal{M}}$:

▶ latent missing z_M are normal given z_O :

$$\textbf{z}_{\mathcal{M}}|\textbf{z}_{\mathcal{O}} \sim \mathcal{N}(\boldsymbol{\Sigma}_{\mathcal{M},\mathcal{O}}\boldsymbol{\Sigma}_{\mathcal{O},\mathcal{O}}^{-1}\textbf{z}_{\mathcal{O}},\boldsymbol{\Sigma}_{\mathcal{M},\mathcal{M}}-\boldsymbol{\Sigma}_{\mathcal{M},\mathcal{O}}\boldsymbol{\Sigma}_{\mathcal{O},\mathcal{O}}^{-1}\boldsymbol{\Sigma}_{\mathcal{O},\mathcal{M}})$$

predict with mean

$$\hat{\boldsymbol{\mathsf{z}}}_{\mathcal{M}} = \boldsymbol{\Sigma}_{\mathcal{M},\mathcal{O}}\boldsymbol{\Sigma}_{\mathcal{O},\mathcal{O}}^{-1}\mathbb{E}[\boldsymbol{\mathsf{z}}_{\mathcal{O}}|\boldsymbol{\mathsf{z}}_{\mathcal{O}} \in \boldsymbol{\mathsf{f}}_{\mathcal{O}}^{-1}(\boldsymbol{\mathsf{x}}_{\mathcal{O}})]$$

► map back to observed space $\hat{\mathbf{x}}_{\mathcal{M}} = \mathbf{f}_{\mathcal{M}}(\hat{\mathbf{z}}_{\mathcal{M}})$ Gaussian copula model

Multiple imputation

When imputation is the intermediate step to learn some parameter θ , e.g. linear coefficients, on imputed complete dataset:

- Generate *m* different imputed datasets $X^{(1)}, \ldots, X^{(m)}$.
- Combine all estiamtes into one: $\hat{\theta} = \frac{\sum_{j=1}^{m} \hat{\theta}^{(j)}}{m}$.

Given parameters, imputation is easy

- ▶ observed entries $\mathbf{x}_{\mathcal{O}}$ of new row $\mathbf{x} \in \mathbb{R}^p$, $\mathcal{O} \subset \{1, \dots, p\}$
- missing entries $\mathcal{M} = \{1, \dots, p\} \setminus \mathcal{O}$
- \blacktriangleright marginals $f = (f_{\mathcal{O}}, f_{\mathcal{M}})$ and copula correlation matrix Σ
- ► the truncated region: $\mathbf{z}_{\mathcal{O}} \in \mathbf{f}_{\mathcal{O}}^{-1}(\mathbf{x}_{\mathcal{O}}) := \prod_{j \in \mathcal{O}} f_j^{-1}(x_j)$

impute missing entries using normality of $z_{\mathcal{M}}$:

$$\textbf{z}_{\mathcal{M}}|\textbf{z}_{\mathcal{O}} \sim \mathcal{N}\big(\boldsymbol{\Sigma}_{\mathcal{M},\mathcal{O}}\boldsymbol{\Sigma}_{\mathcal{O},\mathcal{O}}^{-1}\textbf{z}_{\mathcal{O}},\boldsymbol{\Sigma}_{\mathcal{M},\mathcal{M}}-\boldsymbol{\Sigma}_{\mathcal{M},\mathcal{O}}\boldsymbol{\Sigma}_{\mathcal{O},\mathcal{O}}^{-1}\boldsymbol{\Sigma}_{\mathcal{O},\mathcal{M}}\big)$$

Sample $\mathbf{z}_{\mathcal{M}}^{(i)}$ from the above distribution for i = 1, .., m.

• map back to observed space $\hat{\mathbf{x}}_{\mathcal{M}}^{(i)} = \mathbf{f}_{\mathcal{M}}(\hat{\mathbf{z}}_{\mathcal{M}}^{(i)})$ for i = 1, ..., m.

Table of Contents

Demo

Check out our Github page

- Python package https://github.com/udellgroup/GaussianCopulaImp
- Single line installment: pip install GaussianCopulaImp
- More tutorials on multiple imputation, accelerating the algorithm for large datasets, etc.