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» The software can be easily installed and used.
> We want to know if our method works well for your problem!



Table of Contents

@ Motivation

© Gaussian copula model

© Demo



Motivation

Let’s first see a general social survey dataset
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Figure 1: 2538 participants and 9 questions. 18.2% entries are missing in total.
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Motivation

Example variables

> Subjective class identification: If you were asked to use one of four
names for your social class, which would you say you belong in: the lower class,
the working class, the middle class, or the upper class?

» General happiness: Taken all together, how would you say things are these
days—would you say that you are very happy, pretty happy, or not too happy?

» Respondents income: In which of these groups did your earnings from
(OCCUPATION IN OCC) for last year—[the previous year]—fall? That is, before
taxes or other deductions. Just tell me the letter.

> Weeks r. worked last year: In [the previous year] how many weeks did you
work either full-time or part-time not counting work around the house—include paid

vacations and sick leave?
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Motivation

Recap: GLRM imputes mixed data better than PCA

Generalized low rank model: find low rank matrix X € Rk and
W € R¥*P such that XW approximates Y € R"*P well:

d
minimize Z 7 (Y,J,x, WJ> —i—Zr, Xi —i—Z 7i (w;)
j=1

(i))eQ

» /; can vary for different j.

» The regularizer for row r; and column 7; can vary.
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Recap: GLRM imputes mixed data better than PCA

Generalized low rank model: find low rank matrix X € Rk and
W € R¥*P such that XW approximates Y € R"*P well:

d
minimize Z 7 (Y,J,x, WJ> —i—Zr, Xi —i—Z 7i (w;)
j=1

(i))eQ

» /; can vary for different j.

» The regularizer for row r; and column 7; can vary.

Great flexibility usually means many choices to make...
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Motivation

GLRM: practical consideration

Generalized low rank model: find low rank matrix X € R"** and
W € R¥*P such that XW approximates Y € R™*P well:

n d
minimize Z ¢ (YU,X,-TWJ'> + Z ri (xi) + Z i (w;)
i=1 j=1

(if)eQ

> What ¢; to choose?
» How to assign weights to ¢; when columns have different scales?
» What regularizer r;, 7; to use?
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GLRM: practical consideration

Generalized low rank model: find low rank matrix X € R"** and
W € R¥*P such that XW approximates Y € R™*P well:

n d
minimize Z ¢ (YU,X,-TWJ'> + Z ri (xi) + Z i (w;)
i=1 j=1

(if)eQ

> What ¢; to choose?

» How to assign weights to ¢; when columns have different scales?
» What regularizer r;, 7; to use?

And there are tuning parameters...
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GLRM: practical consideration

Generalized low rank model: find low rank matrix X € Rk and
W € R¥*P such that XW approximates Y € R"*P well:

n d
minimize Y ( 'J?XITWJ'>+Z’7(X, Y F (w)
i=1 j=1

(iJ)e

» How to choose the rank k?

» If setting r; and 7; as quadratic regularization with parameter )\, how
to choose A7
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Motivation

GLRM: practical consideration

Generalized low rank model: find low rank matrix X € Rk and
W € R¥*P such that XW approximates Y € R"*P well:

n d
minimize Y ( 'J?XITWJ'>+Z’7(X, Y F (w)
i=1 j=1

(iJ)e

» How to choose the rank k?

» If setting r; and 7; as quadratic regularization with parameter )\, how
to choose A7

» Need to search over two-dimensional grid.
Is the problem just about computation?
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Motivation
GLRM: low rank assumption

Generalized low rank model: find low rank matrix X € R"*k and
W € R¥*P such that XW approximates Y € R"*P well:

n d
minimize Y ( 'J?XITWJ'>+Z’7(X, Y F (w)
i=1 j=1

(iJ)e

» Only works well when Y can be approximated by low rank matrix.

> Big data (large n and large p) usually have low rank structure.
» Movie rating datasets: many movies and many users

» Long skinny data (large n and small p) usually does not have low
rank structure.

» Social survey data: many participants, few questions.
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Motivation

Get over the low rank assumption

P Large n allows learning more complex variable dependence than the
low rank structure.

> Statistical dependence structure: model the joint distribution
» Gaussian distribution for quantitative vector
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Motivation

Get over the low rank assumption

P Large n allows learning more complex variable dependence than the
low rank structure.
> Statistical dependence structure: model the joint distribution
» Gaussian distribution for quantitative vector

@ AIll 1-dimensional marginals are Gaussian
@ The joint p-dimensional distribution is multivariate Gaussian

First, can we use 1-dimensional Gaussian to model ordinal/binary variable?
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Motivation

Histograms for some GSS variables
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Motivation

Generate ordinal data by thresholding Gaussian variable

3,

ordinal x value

normal z value

» Select thresholds to ensure desired class proportion.

> A mapping between ordinal levels and intervals.

> f(z) = x for z € [ax, axs+1) of F1(x) = [ax, ax+1)-
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Motivation

Estimated thresholds for some GSS variables
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Figure 2: Red vertical lines indicate estimated thresholds.
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Gaussian copula model

Gaussian copula model for mixed data

We say x = (xi, ..., Xp) follows the Gaussian copula model if

» marginals: x = f(z) for f = (f1,...,f,) entrywise monotonic,

XJ':fJ'(ZJ')v Jj=1...,p

» copula: z ~ N(0,X) with correlation matrix X
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Gaussian copula model

Gaussian copula model for mixed data

We say x = (xi, ..., Xp) follows the Gaussian copula model if
» marginals: x = f(z) for f = (f1,...,f,) entrywise monotonic,
Xj:fj(Zj), j:].,...,p
> copula: z ~ N(0,X) with correlation matrix X

» Estimate f; to match the observed empirical distribution
» Estimate X through an EM algorithm
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Gaussian copula model

Given parameter estimate, imputation is easy

Figure 3: Curves indicate density and dots mark the observation.
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Gaussian copula model

Given parameter estimate, imputation is easy
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Figure 4: Curves indicate density and crosses mark the prediction.
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Gaussian copula model

Given parameter estimate, imputation is easy
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Figure 5: Curves indicate density and crosses mark the prediction.
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Gaussian copula model

Given parameters, imputation is easy

> observed entries xp of new row x € RP, O C {1,...,p}
» missing entries M = {1,...,p}\ O
» marginals f = (fp, fr() and copula correlation matrix X

» the truncated region: zp € f(;l(xo) = [ljco G*I(XJ-)

impute missing entries using normality of z:

P latent missing zx4 are normal given zp:

1 -1
zmlzo ~ N(Em0Z 0020, EMM — ZM0Z50T0,M)
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Gaussian copula model

Given parameters, imputation is easy

> observed entries xp of new row x € R?, O C {1,...,p}
> missing entries M = {1,...,p} \ O

» marginals f = (fo,frq) and copula correlation matrix X
> the truncated region: zp € f,;'(x0) = [ljco 75._1(xj)

impute missing entries using normality of z:
P latent missing zx4 are normal given zp:
-1 -1
zmlzo ~ N(Em0Z0 020, EMM — ZM0Z0pTo,M)

» predict with mean

Zpm = ZMon(_Q’lOE[Z@‘ZO S fal(Xo)]

» map back to observed space Xy = faq(Z)
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Gaussian copula model

Multiple imputation

When imputation is the intermediate step to learn some parameter 0, e.g.
linear coefficients, on imputed complete dataset:

© Generate m different imputed datasets X0 o x(m),

@ For each imputed dataset XU), learn the desired model parameter 6u)
forj=1,...,m.

> 0]

© Combine all estiamtes into one: 0 = -
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Gaussian copula model
Given parameters, imputation is easy

> observed entries xp of new row x € RP, O C {1,...,p}

> missing entries M = {1,...,p}\ O

» marginals f = (fo,frq) and copula correlation matrix X

> the truncated region: zp € f,'(xp) = [jco C._l(xj)
impute missing entries using normality of z:

P latent missing zxq are normal given zo:

zmlzo ~ N(Zm 0% 0020, Tmm — TrmoTopTom)
> Sample zs\i/)l from the above distribution for i =1,.., m.
» map back to observed space ’A(S\I/)t = fM(isa) fori=1,..,m.

Gaussian copula model
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© Demo

Demo

Demo
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Demo

Check out our Github page

» Python package
https://github.com/udellgroup/GaussianCopulalmp

» Single line installment: pip install GaussianCopulalmp

> More tutorials on multiple imputation, accelerating the algorithm for
large datasets, etc.
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