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Why I am here today?

I In your course project, it is very likely to run into missing data.

I The missing data imputation method I introduce today can be simply
used without selecting hyperparameters.

I The software can be easily installed and used.

I We want to know if our method works well for your problem!
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Motivation

Let’s first see a general social survey dataset

Figure 1: 2538 participants and 9 questions. 18.2% entries are missing in total.
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Motivation

Example variables

I Subjective class identification: If you were asked to use one of four

names for your social class, which would you say you belong in: the lower class,

the working class, the middle class, or the upper class?

I General happiness: Taken all together, how would you say things are these

days–would you say that you are very happy, pretty happy, or not too happy?

I Respondents income: In which of these groups did your earnings from

(OCCUPATION IN OCC) for last year–[the previous year]–fall? That is, before

taxes or other deductions. Just tell me the letter.

I Weeks r. worked last year: In [the previous year] how many weeks did you

work either full-time or part-time not counting work around the house–include paid

vacations and sick leave?
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Motivation

Recap: GLRM imputes mixed data better than PCA

Generalized low rank model: find low rank matrix X ∈ Rn×k and
W ∈ Rk×p such that XW approximates Y ∈ Rn×p well:

minimize
∑

(i ,j)∈Ω

`j

(
Yij , x

T
i wj

)
+

n∑
i=1

ri (xi ) +
d∑

j=1

r̃j (wj)

I `j can vary for different j .

I The regularizer for row ri and column r̃j can vary.

Great flexibility usually means many choices to make...

Motivation 6



Motivation

Recap: GLRM imputes mixed data better than PCA

Generalized low rank model: find low rank matrix X ∈ Rn×k and
W ∈ Rk×p such that XW approximates Y ∈ Rn×p well:

minimize
∑

(i ,j)∈Ω

`j

(
Yij , x

T
i wj

)
+

n∑
i=1

ri (xi ) +
d∑

j=1

r̃j (wj)

I `j can vary for different j .

I The regularizer for row ri and column r̃j can vary.

Great flexibility usually means many choices to make...

Motivation 6



Motivation

GLRM: practical consideration

Generalized low rank model: find low rank matrix X ∈ Rn×k and
W ∈ Rk×p such that XW approximates Y ∈ Rn×p well:

minimize
∑

(i ,j)∈Ω

`j

(
Yij , x

T
i wj

)
+

n∑
i=1

ri (xi ) +
d∑

j=1

r̃j (wj)

I What `j to choose?

I How to assign weights to `j when columns have different scales?

I What regularizer ri , r̃j to use?

And there are tuning parameters...
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Is the problem just about computation?
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Motivation

GLRM: low rank assumption

Generalized low rank model: find low rank matrix X ∈ Rn×k and
W ∈ Rk×p such that XW approximates Y ∈ Rn×p well:

minimize
∑

(i ,j)∈Ω

`j

(
Yij , x

T
i wj

)
+

n∑
i=1

ri (xi ) +
d∑

j=1

r̃j (wj)

I Only works well when Y can be approximated by low rank matrix.
I Big data (large n and large p) usually have low rank structure.

I Movie rating datasets: many movies and many users

I Long skinny data (large n and small p) usually does not have low
rank structure.
I Social survey data: many participants, few questions.
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Motivation

Get over the low rank assumption

I Large n allows learning more complex variable dependence than the
low rank structure.

I Statistical dependence structure: model the joint distribution
I Gaussian distribution for quantitative vector

1 All 1-dimensional marginals are Gaussian
2 The joint p-dimensional distribution is multivariate Gaussian

First, can we use 1-dimensional Gaussian to model ordinal/binary variable?
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Motivation

Histograms for some GSS variables
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Motivation

Generate ordinal data by thresholding Gaussian variable

-∞ -1 0 1 ∞
1

2

3

normal z value

or
d

in
al

x
va

lu
e

I Select thresholds to ensure desired class proportion.

I A mapping between ordinal levels and intervals.

I f (z) = x for z ∈ [ax , ax+1) or f −1(x) = [ax , ax+1).
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Motivation

Estimated thresholds for some GSS variables
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Figure 2: Red vertical lines indicate estimated thresholds.
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Gaussian copula model
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Gaussian copula model

Gaussian copula model for mixed data

We say x = (x1, . . . , xp) follows the Gaussian copula model if

I marginals: x = f(z) for f = (f1, . . . , fp) entrywise monotonic,

xj = fj(zj), j = 1, . . . , p

I copula: z ∼ N (0,Σ) with correlation matrix Σ
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Gaussian copula model

Gaussian copula model for mixed data

We say x = (x1, . . . , xp) follows the Gaussian copula model if

I marginals: x = f(z) for f = (f1, . . . , fn) entrywise monotonic,

xj = fj(zj), j = 1, . . . , p

I copula: z ∼ N (0,Σ) with correlation matrix Σ

I Estimate fj to match the observed empirical distribution

I Estimate Σ through an EM algorithm

Gaussian copula model 16



Gaussian copula model

Given parameter estimate, imputation is easy
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Figure 3: Curves indicate density and dots mark the observation.
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Gaussian copula model

Given parameter estimate, imputation is easy
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Figure 4: Curves indicate density and crosses mark the prediction.
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Gaussian copula model

Given parameter estimate, imputation is easy
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Figure 5: Curves indicate density and crosses mark the prediction.
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Gaussian copula model

Given parameters, imputation is easy

I observed entries xO of new row x ∈ Rp, O ⊂ {1, . . . , p}
I missing entries M = {1, . . . , p} \ O
I marginals f = (fO, fM) and copula correlation matrix Σ

I the truncated region: zO ∈ f−1
O (xO) :=

∏
j∈O f −1

j (xj)

impute missing entries using normality of zM:

I latent missing zM are normal given zO:

zM|zO ∼ N (ΣM,OΣ−1
O,OzO,ΣM,M − ΣM,OΣ−1

O,OΣO,M)
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I observed entries xO of new row x ∈ Rp, O ⊂ {1, . . . , p}
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I the truncated region: zO ∈ f−1
O (xO) :=

∏
j∈O f −1

j (xj)

impute missing entries using normality of zM:

I latent missing zM are normal given zO:

zM|zO ∼ N (ΣM,OΣ−1
O,OzO,ΣM,M − ΣM,OΣ−1

O,OΣO,M)

I predict with mean

ẑM = ΣM,OΣ−1
O,OE[zO|zO ∈ f−1

O (xO)]

I map back to observed space x̂M = fM(ẑM)
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Gaussian copula model

Multiple imputation

When imputation is the intermediate step to learn some parameter θ, e.g.
linear coefficients, on imputed complete dataset:

1 Generate m different imputed datasets X (1), . . . ,X (m).

2 For each imputed dataset X (j), learn the desired model parameter θ̂(j)

for j = 1, . . . ,m.

3 Combine all estiamtes into one: θ̂ =
∑m

j=1 θ̂
(j)

m .
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Gaussian copula model

Given parameters, imputation is easy

I observed entries xO of new row x ∈ Rp, O ⊂ {1, . . . , p}
I missing entries M = {1, . . . , p} \ O
I marginals f = (fO, fM) and copula correlation matrix Σ

I the truncated region: zO ∈ f−1
O (xO) :=

∏
j∈O f −1

j (xj)

impute missing entries using normality of zM:

I latent missing zM are normal given zO:

zM|zO ∼ N (ΣM,OΣ−1
O,OzO,ΣM,M − ΣM,OΣ−1

O,OΣO,M)

I Sample z
(i)
M from the above distribution for i = 1, ..,m.

I map back to observed space x̂
(i)
M = fM(ẑ

(i)
M) for i = 1, ..,m.
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Demo

Check out our Github page

I Python package
https://github.com/udellgroup/GaussianCopulaImp

I Single line installment: pip install GaussianCopulaImp

I More tutorials on multiple imputation, accelerating the algorithm for
large datasets, etc.
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