Missing Value Imputation via Gaussian Copula

Yuxuan Zhao

ORIE 4741, Nov 112021

Why I am here today?

- In your course project, it is very likely to run into missing data.

Why I am here today?

- In your course project, it is very likely to run into missing data.
- The missing data imputation method I introduce today can be simply used without selecting hyperparameters.
- The software can be easily installed and used.

Why I am here today?

- In your course project, it is very likely to run into missing data.
- The missing data imputation method I introduce today can be simply used without selecting hyperparameters.
- The software can be easily installed and used.
- We want to know if our method works well for your problem!

Table of Contents

(1) Motivation
(2) Gaussian copula model
(3) Demo

Let's first see a general social survey dataset

AGE DEGREE RINCOME CLASS_ SATJOB WEEKSWRK HAPPY HEALTH SOCBAR

$\mathbf{1}$	53.0	3	12.0	3.0	2.0	52.0	1.0	1.0	NaN
2	26.0	3	12.0	3.0	2.0	52.0	1.0	1.0	NaN
$\mathbf{3}$	59.0	1	NaN	2.0	1.0	13.0	3.0	2.0	2.0
4	56.0	3	9.0	3.0	1.0	52.0	1.0	NaN	5.0
$\mathbf{5}$	74.0	3	NaN	3.0	NaN	0.0	1.0	1.0	NaN

Figure 1: 2538 participants and 9 questions. 18.2% entries are missing in total.

Example variables

- Subjective class identification: If you were asked to use one of four names for your social class, which would you say you belong in: the lower class, the working class, the middle class, or the upper class?
- General happiness: Taken all together, how would you say things are these days-would you say that you are very happy, pretty happy, or not too happy?
- Respondents income: In which of these groups did your earnings from (OCCUPATION IN OCC) for last year-[the previous year]-fall? That is, before taxes or other deductions. Just tell me the letter.
- Weeks r. worked last year: In [the previous year] how many weeks did you work either full-time or part-time not counting work around the house-include paid vacations and sick leave?

Recap: GLRM imputes mixed data better than PCA

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that $X W$ approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$
\operatorname{minimize} \sum_{(i, j) \in \Omega} \ell_{j}\left(Y_{i j}, x_{i}^{T} w_{j}\right)+\sum_{i=1}^{n} r_{i}\left(x_{i}\right)+\sum_{j=1}^{d} \tilde{r}_{j}\left(w_{j}\right)
$$

- ℓ_{j} can vary for different j.
- The regularizer for row r_{i} and column \tilde{r}_{j} can vary.

Recap: GLRM imputes mixed data better than PCA

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that $X W$ approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$
\operatorname{minimize} \sum_{(i, j) \in \Omega} \ell_{j}\left(Y_{i j}, x_{i}^{T} w_{j}\right)+\sum_{i=1}^{n} r_{i}\left(x_{i}\right)+\sum_{j=1}^{d} \tilde{r}_{j}\left(w_{j}\right)
$$

- ℓ_{j} can vary for different j.
- The regularizer for row r_{i} and column \tilde{r}_{j} can vary.

Great flexibility usually means many choices to make...

GLRM: practical consideration

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that $X W$ approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$
\operatorname{minimize} \sum_{(i, j) \in \Omega} \ell_{j}\left(Y_{i j}, x_{i}^{T} w_{j}\right)+\sum_{i=1}^{n} r_{i}\left(x_{i}\right)+\sum_{j=1}^{d} \tilde{r}_{j}\left(w_{j}\right)
$$

- What ℓ_{j} to choose?
- How to assign weights to ℓ_{j} when columns have different scales?
- What regularizer r_{i}, \tilde{r}_{j} to use?

GLRM: practical consideration

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that $X W$ approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$
\operatorname{minimize} \sum_{(i, j) \in \Omega} \ell_{j}\left(Y_{i j}, x_{i}^{T} w_{j}\right)+\sum_{i=1}^{n} r_{i}\left(x_{i}\right)+\sum_{j=1}^{d} \tilde{r}_{j}\left(w_{j}\right)
$$

- What ℓ_{j} to choose?
- How to assign weights to ℓ_{j} when columns have different scales?
- What regularizer r_{i}, \tilde{r}_{j} to use?

And there are tuning parameters...

GLRM: practical consideration

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that $X W$ approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$
\operatorname{minimize} \sum_{(i, j) \in \Omega} \ell_{j}\left(Y_{i j}, x_{i}^{T} w_{j}\right)+\sum_{i=1}^{n} r_{i}\left(x_{i}\right)+\sum_{j=1}^{d} \tilde{r}_{j}\left(w_{j}\right)
$$

- How to choose the rank k ?
- If setting r_{i} and \tilde{r}_{j} as quadratic regularization with parameter λ, how to choose λ ?

GLRM: practical consideration

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that $X W$ approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$
\operatorname{minimize} \sum_{(i, j) \in \Omega} \ell_{j}\left(Y_{i j}, x_{i}^{T} w_{j}\right)+\sum_{i=1}^{n} r_{i}\left(x_{i}\right)+\sum_{j=1}^{d} \tilde{r}_{j}\left(w_{j}\right)
$$

- How to choose the rank k ?
- If setting r_{i} and \tilde{r}_{j} as quadratic regularization with parameter λ, how to choose λ ?
- Need to search over two-dimensional grid.

GLRM: practical consideration

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that $X W$ approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$
\operatorname{minimize} \sum_{(i, j) \in \Omega} \ell_{j}\left(Y_{i j}, x_{i}^{T} w_{j}\right)+\sum_{i=1}^{n} r_{i}\left(x_{i}\right)+\sum_{j=1}^{d} \tilde{r}_{j}\left(w_{j}\right)
$$

- How to choose the rank k ?
- If setting r_{i} and \tilde{r}_{j} as quadratic regularization with parameter λ, how to choose λ ?
- Need to search over two-dimensional grid.

Is the problem just about computation?

GLRM: low rank assumption

Generalized low rank model: find low rank matrix $X \in \mathbb{R}^{n \times k}$ and $W \in \mathbb{R}^{k \times p}$ such that $X W$ approximates $Y \in \mathbb{R}^{n \times p}$ well:

$$
\operatorname{minimize} \sum_{(i, j) \in \Omega} \ell_{j}\left(Y_{i j}, x_{i}^{T} w_{j}\right)+\sum_{i=1}^{n} r_{i}\left(x_{i}\right)+\sum_{j=1}^{d} \tilde{r}_{j}\left(w_{j}\right)
$$

- Only works well when Y can be approximated by low rank matrix.
- Big data (large n and large p) usually have low rank structure.
- Movie rating datasets: many movies and many users
- Long skinny data (large n and small p) usually does not have low rank structure.
- Social survey data: many participants, few questions.

Get over the low rank assumption

- Large n allows learning more complex variable dependence than the low rank structure.
- Statistical dependence structure: model the joint distribution
- Gaussian distribution for quantitative vector

Get over the low rank assumption

- Large n allows learning more complex variable dependence than the low rank structure.
- Statistical dependence structure: model the joint distribution
- Gaussian distribution for quantitative vector
(1) All 1-dimensional marginals are Gaussian
(2) The joint p-dimensional distribution is multivariate Gaussian

Get over the low rank assumption

- Large n allows learning more complex variable dependence than the low rank structure.
- Statistical dependence structure: model the joint distribution
- Gaussian distribution for quantitative vector
(1) All 1-dimensional marginals are Gaussian
(2) The joint p-dimensional distribution is multivariate Gaussian

First, can we use 1-dimensional Gaussian to model ordinal/binary variable?

Histograms for some GSS variables

from left to right: Very happy to Not too happy

How many people in contact in a typical weekday

Respondont's income

from left to right: Less than $\$ 1000$ to more than $\$ 25000$

Weeks r. worked last year

Generate ordinal data by thresholding Gaussian variable

- Select thresholds to ensure desired class proportion.
- A mapping between ordinal levels and intervals.
- $f(z)=x$ for $z \in\left[a_{x}, a_{x+1}\right)$ or $f^{-1}(x)=\left[a_{x}, a_{x+1}\right)$.

Motivation

Estimated thresholds for some GSS variables

General happiness

How many people in contact in a typical week

from left to right: $0-4$ persons to 50 or more

Figure 2: Red vertical lines indicate estimated thresholds.

Table of Contents

(1) Motivation
(2) Gaussian copula model
(3) Demo

Gaussian copula model for mixed data

We say $x=\left(x_{1}, \ldots, x_{p}\right)$ follows the Gaussian copula model if

- marginals: $x=\mathbf{f}(z)$ for $\mathbf{f}=\left(f_{1}, \ldots, f_{p}\right)$ entrywise monotonic,

$$
x_{j}=f_{j}\left(z_{j}\right), \quad j=1, \ldots, p
$$

- copula: $z \sim \mathcal{N}(0, \Sigma)$ with correlation matrix Σ

Gaussian copula model for mixed data

We say $x=\left(x_{1}, \ldots, x_{p}\right)$ follows the Gaussian copula model if

- marginals: $x=\mathbf{f}(z)$ for $\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right)$ entrywise monotonic,

$$
x_{j}=f_{j}\left(z_{j}\right), \quad j=1, \ldots, p
$$

- copula: $z \sim \mathcal{N}(0, \Sigma)$ with correlation matrix Σ
- Estimate f_{j} to match the observed empirical distribution
- Estimate Σ through an EM algorithm

Given parameter estimate, imputation is easy

Figure 3: Curves indicate density and dots mark the observation.

Given parameter estimate, imputation is easy

Figure 4: Curves indicate density and crosses mark the prediction.

Given parameter estimate, imputation is easy

Figure 5: Curves indicate density and crosses mark the prediction.

Given parameters, imputation is easy

- observed entries $\mathbf{x}_{\mathcal{O}}$ of new row $\mathbf{x} \in \mathbb{R}^{p}, \mathcal{O} \subset\{1, \ldots, p\}$
- missing entries $\mathcal{M}=\{1, \ldots, p\} \backslash \mathcal{O}$
- marginals $\mathbf{f}=\left(\mathbf{f}_{\mathcal{O}}, \mathbf{f}_{\mathcal{M}}\right)$ and copula correlation matrix Σ
- the truncated region: $\mathbf{z}_{\mathcal{O}} \in \mathbf{f}_{\mathcal{O}}^{-1}\left(\mathbf{x}_{\mathcal{O}}\right):=\prod_{j \in \mathcal{O}} f_{j}^{-1}\left(x_{j}\right)$
impute missing entries using normality of $\mathbf{z}_{\mathcal{M}}$:
- latent missing $\mathbf{z}_{\mathcal{M}}$ are normal given $\mathbf{z}_{\mathcal{O}}$:

$$
\mathbf{z}_{\mathcal{M}} \mid \mathbf{z}_{\mathcal{O}} \sim \mathcal{N}\left(\Sigma_{\mathcal{M}, \mathcal{O}} \Sigma_{\mathcal{O}, \mathcal{O}}^{-1} \mathbf{z}_{\mathcal{O}}, \Sigma_{\mathcal{M}, \mathcal{M}}-\Sigma_{\mathcal{M}, \mathcal{O}} \Sigma_{\mathcal{O}, \mathcal{O}}^{-1} \Sigma_{\mathcal{O}, \mathcal{M}}\right)
$$

Given parameters, imputation is easy

- observed entries $\mathbf{x}_{\mathcal{O}}$ of new row $\mathbf{x} \in \mathbb{R}^{p}, \mathcal{O} \subset\{1, \ldots, p\}$
- missing entries $\mathcal{M}=\{1, \ldots, p\} \backslash \mathcal{O}$
- marginals $\mathbf{f}=\left(\mathbf{f}_{\mathcal{O}}, \mathbf{f}_{\mathcal{M}}\right)$ and copula correlation matrix Σ
- the truncated region: $\mathbf{z}_{\mathcal{O}} \in \mathbf{f}_{\mathcal{O}}^{-1}\left(\mathbf{x}_{\mathcal{O}}\right):=\prod_{j \in \mathcal{O}} f_{j}^{-1}\left(x_{j}\right)$
impute missing entries using normality of $\mathbf{z}_{\mathcal{M}}$:
- latent missing $\mathbf{z}_{\mathcal{M}}$ are normal given $\mathbf{z}_{\mathcal{O}}$:

$$
\mathbf{z}_{\mathcal{M}} \mid \mathbf{z}_{\mathcal{O}} \sim \mathcal{N}\left(\Sigma_{\mathcal{M}, \mathcal{O}} \Sigma_{\mathcal{O}, \mathcal{O}}^{-1} \mathbf{z}_{\mathcal{O}}, \Sigma_{\mathcal{M}, \mathcal{M}}-\Sigma_{\mathcal{M}, \mathcal{O}} \Sigma_{\mathcal{O}, \mathcal{O}}^{-1} \Sigma_{\mathcal{O}, \mathcal{M}}\right)
$$

- predict with mean

$$
\hat{\mathbf{z}}_{\mathcal{M}}=\Sigma_{\mathcal{M}, \mathcal{O}} \Sigma_{\mathcal{O}, \mathcal{O}}^{-1} \mathbb{E}\left[\mathbf{z}_{\mathcal{O}} \mid \mathbf{z}_{\mathcal{O}} \in \mathbf{f}_{\mathcal{O}}^{-1}\left(\mathbf{x}_{\mathcal{O}}\right)\right]
$$

- map back to observed space $\hat{\mathbf{x}}_{\mathcal{M}}=\mathbf{f}_{\mathcal{M}}\left(\hat{\mathbf{z}}_{\mathcal{M}}\right)$

Multiple imputation

When imputation is the intermediate step to learn some parameter θ, e.g. linear coefficients, on imputed complete dataset:
(1) Generate m different imputed datasets $X^{(1)}, \ldots, X^{(m)}$.
(2) For each imputed dataset $X^{(j)}$, learn the desired model parameter $\hat{\theta}^{(j)}$ for $j=1, \ldots, m$.
(3) Combine all estiamtes into one: $\hat{\theta}=\frac{\sum_{j=1}^{m} \hat{\theta}^{(j)}}{m}$.

Given parameters, imputation is easy

- observed entries $\mathbf{x}_{\mathcal{O}}$ of new row $\mathbf{x} \in \mathbb{R}^{p}, \mathcal{O} \subset\{1, \ldots, p\}$
- missing entries $\mathcal{M}=\{1, \ldots, p\} \backslash \mathcal{O}$
- marginals $\mathbf{f}=\left(\mathbf{f}_{\mathcal{O}}, \mathbf{f}_{\mathcal{M}}\right)$ and copula correlation matrix Σ
- the truncated region: $\mathbf{z}_{\mathcal{O}} \in \mathbf{f}_{\mathcal{O}}^{-1}\left(\mathbf{x}_{\mathcal{O}}\right):=\prod_{j \in \mathcal{O}} f_{j}^{-1}\left(x_{j}\right)$
impute missing entries using normality of $\mathbf{z}_{\mathcal{M}}$:
- latent missing $\mathbf{z}_{\mathcal{M}}$ are normal given $\mathbf{z}_{\mathcal{O}}$:

$$
\mathbf{z}_{\mathcal{M}} \mid \mathbf{z}_{\mathcal{O}} \sim \mathcal{N}\left(\Sigma_{\mathcal{M}, \mathcal{O}} \Sigma_{\mathcal{O}, \mathcal{O}}^{-1} \mathbf{z}_{\mathcal{O}}, \Sigma_{\mathcal{M}, \mathcal{M}}-\Sigma_{\mathcal{M}, \mathcal{O}} \Sigma_{\mathcal{O}, \mathcal{O}}^{-1} \Sigma_{\mathcal{O}, \mathcal{M}}\right)
$$

- Sample $\mathbf{z}_{\mathcal{M}}^{(i)}$ from the above distribution for $i=1, . ., m$.
- map back to observed space $\hat{\mathbf{x}}_{\mathcal{M}}^{(i)}=\mathbf{f}_{\mathcal{M}}\left(\hat{\mathbf{z}}_{\mathcal{M}}^{(i)}\right)$ for $i=1, . ., m$.

Table of Contents

(1) Motivation

(2) Gaussian copula model
(3) Demo

Demo

Check out our Github page

- Python package https://github.com/udellgroup/GaussianCopulaImp
- Single line installment: pip install GaussianCopulaImp
- More tutorials on multiple imputation, accelerating the algorithm for large datasets, etc.

