
ORIE 3120
Industrial Data and Systems Analysis

Recitation 1
Relational Database Concepts

Peter Jackson
Edited for SQLiteStudio 3 by L. Seligman, V. Sung, and P. Frazier

	
Basic Concepts

Your teaching assistant will explain or review the following concepts:
• Table (data presented in rows and columns)
• Database table (data presented in rows using fixed, pre-specified

columns)
• Fields (columns of a database table, with pre-specified attributes)
• Records (rows of data in a database table)
• Data types (typical field types: text, integer, Boolean, single-

precision, double-precision, etc.)
• Key (a collection of fields that uniquely define a record)

You should be provided with the following files:
• Chinook_Sqlite.sqlite
• MediaType.csv

Getting Started

1. To receive credit for attendance, show the answers to the questions asked
in this recitation to your TA when you are done and ask her or him to mark
down your netid. The answers can either be written on a printout of this
document, a separate piece of paper, or in a file that you save on your
computer. You may work by yourself, or with one other person, but
please do not work in groups larger than two.
Name NetID

2. Create a directory to store your work. If you use the lab machine, be
aware that the directory (and all your work) will disappear when the
machine is rebooted. We recommend using a USB flash-drive.

3. Open SQLiteStudio 3. Screenshots and descriptions in this recitation are
based on SQLiteStudio v3.1.1 on Windows 10. SQLiteStudio is a little bit
different on Mac, so be aware that the interface will be a bit different on
that operating system. If you are using your own computer and haven’t
installed it yet, you can install it from http://sqlitestudio.pl/.

4. Open an existing database by selecting the option “Add a database” under
the “Databases” tab. Download and select the file “Chinook_Sqlite.sqlite”
from blackboard. You can leave checked the box “Permanent (keep it in
configuration)”. Then, click the “Connect to the database” icon as outlined
in this screenshot:

5. Your TA will briefly explain the following sections of your database file:
• Tables
• Views

Creating Tables and Manipulating Records

We will consider two ways in which you can import data into your database:

1. Define a table and enter data manually
2. Import data from Microsoft Excel

Define a table and enter data manually:
1. Click on the “Create a table” icon as highlighted in the screen shot below:

2. Name your table “MediaType2”. Add fields by clicking the button with
tooltip “Add Column (Ins)” above the table name you just entered.

	

3. Create a column named “MediaTypeID” and check the box to make it the

“Primary key”. Set its data type to “INTEGER”.

	
	

4. The other boxes (“Foreign Key”, “Unique”, “Not NULL” etc.) allow you to
specify other properties you would like to require of the data in this
column. For example, if you clicked “Not NULL”, the database would
check that all every row entered in this table would have a value (i.e.,

would not be NULL). We will leave these other boxes unchecked. Go
ahead and click “OK” to finish adding this column.

5. Create a column named “Name”, set its data type to “TEXT”, and click
“OK”.

6. You do not need to add any constraints. Click on the button with the green
check mark with the tooltip “Commit structure changes”. Here, “Commit”
refers to the fact that we have described some changes to the structure of
the database (we want to create a new table) but we haven’t actually
“committed” or applied on them yet. SQLiteStudy will then show the SQL
command that will be executed to create the table that you have described
using the GUI. This query is:

CREATE TABLE MediaType2 (

MediaTypeID INTEGER PRIMARY KEY,
Name TEXT

);

You could have also created this table by typing this command instead of
using the GUI to specify what you wanted to do.

7. Double click “MediaType2” under tables to view the contents of the table.
The table should have no data in it. Make sure you are viewing the table in
the “Data” tab in “Grid View” as shown in the screen shot below:

	

8. You can add data manually data to the table “MediaType2” by clicking the
green plus sign to add records, filling in fields, and clicking the green
check mark to commit the changes when you are done. Play around with
adding records and filling in values, but do not commit your changes.
Instead delete the rows you have added by clicking the red minus sign so
that the table is still empty. If you accidentally commit new records, you
can remove them and commit your change.

Import data from Microsoft Excel:
1. We will now add data from the “MediaType.csv” file you have been

provided. Download this file and take note of the folder you put it in.
2. Click the “Import data to table” icon circled in the screen shot below:

3. Confirm that the table into which data will be imported is MediaType2 from

the database Chinook_SQlite. Then click “Next”.
4. Set the input file field to contain the location of the file you downloaded,

“MediaType.csv”. Make sure “First line represents CSV column names” is
clicked, as in the screen shot below. Then click “Finish”.

	

5. Verify that the data is correctly imported. You should see a blue status
message in the bottom of the SQLiteStudio window saying, “Imported data
to the table ‘MediaType2’ successfully” and 5 records in the table, with
different audio file formats, e.g., “Purchased AAC audio file.” If the column
names were incorrectly imported as a record, delete it and commit the
change.

6. Note that this same method of importing data works regardless of what
program we use to create .csv file.

Copying data to a spreadsheet:
1. Open table “Invoice” and view the data in “Grid View”.
2. Click the “Export table” icon marked in the screen shot below:

	

3. Make sure the “Table” field is populated by “Invoice”. Ensure that “Export
table data” is checked. We will export to a csv and so it doesn’t matter
whether the other options (for triggers and indices) are checked. Click
“Next”.

4. For the “File” field, select a folder and filename into which SQLiteStudio
will place your data. Check “Column names in first row”. Make sure
“Export format” is CSV. Click “Finish”.

5. Find the file in the folder you specified in the previous step and make sure
it contains the desired data, along with the column names.

Using the SELECT Query

The purpose of the SELECT Query:
Defn: The SELECT query is the basic tool for getting the data you need from
a relational database. Whether you are using SQL for data mining, data
manipulation, data analysis, or data reporting, your work starts with the
SELECT query.
1. Let’s create our first query. We want to create a query that will allow us to

generate a view of the entries of the “Invoice” table. We can either create
this query using the SQL query editor (which can be accessed using the
“pencil & paper” icon on the top menu bar), or by creating a view. We will
create a view.
Note the difference between a query and a view.

Defn: A query is SQL code executed to pull rows from our database.
Defn: A view is a saved query. By making a query into a view, we can
refer to its results in other queries.

2. Click on the “New view” icon in the toolbar.

	

3. Let’s name the view “Q010Invoice” and enter the following SQL code:

Note the syntax used in the SQL code.
The asterisk “*” used in the SELECT query gets all the rows and
columns from the table after the FROM keyword. In other words, the
above SQL code “selects all rows and columns from the table called
‘Invoice’.” Although SQL commands like “SELECT” and “FROM” are often
written in all caps, SQL does not require this, and your query would run if
you used different capitalization.

4. Click the green check mark and then click “OK” to save the view. You
should see a message indicating success in the status window:
“Committed changes for view ‘Q010Invoice’ (named before “)
successfully.”

5. Click on the “Data” tab to see the results from the view.

6. If you go and look at other tables, you can come back to this view by

clicking “Q010Invoice” under “Views” in the left pane of the window.
Whenever you create and save views, they will be listed here.

7. SQL is a non-procedural language. In the days before SQL, you would

use a procedural language like C to open a file, read the records one at a
time using a FOR loop and display or print them. In SQL, you specify
what you want the result to look like and the looping is done for you
automatically. With SQL, you end up thinking about your data at a more
abstract level and you don’t have to be a programmer to do useful things
with data.

Being selective with the SELECT query:
Being selective in what fields we view:
1. One of the powerful features of SQL is that you can base SELECT queries

on other saved SELECT queries (views) and in this way build up your
queries in simple steps. In other words, we can build queries on queries.

2. We will demonstrate this by being selective in what fields we view. Let’s
be selective about what fields we display in our view “Q010Invoice.”

3. We want to exclude the BillingAddress, BillingCity, BillingState,
BillingCountry, and BillingPostalCode fields from our new view because
we feel that they aren’t relevant to our analysis. In other words, we want to
select only the following fields: InvoiceId, CustomerId, InvoiceDate, Total.

4. Create a new view called “Q020Revenue” with the following SQL code:

Note that the general syntax used above is “Table/View”.”Field”. While this
gives us the view that we want, there is a shortcut we could have used.
Because we are selecting these fields from only one table, and thus there

is no ambiguity*, we can drop the prefix, which specifies which Table/View
we are pulling data from. In other words, we could have used the
language “SELECT InvoiceId, CustomerId... FROM Invoice”
*In the next recitation, you will create queries that pull data from multiple views
and tables that have the same field names. Because of this ambiguity—SQLite
won’t know which table/view to retrieve the data from—you need to include this
prefix.

5. Edit “Q020Revenue” so that the prefixes are deleted from the field names.
a. Select “Q020Revenue” in the left pane where all the table and view

names are listed.
b. In the toolbar, select “Edit view.”

c. Delete the prefixes from the field names.

6. View the results of your edited query. Your query should generate the
same view as in Step 3.

Being selective in what records we view using the WHERE clause:
Defn: The WHERE clause allows us to specify criteria that dictates which
records to display. This clause must be written after the FROM clause.
1. Now, let’s be selective in what records we retrieve. Let’s look for orders

that generated higher revenue, say at least $10. In order words, we want
to see records where the field “Total” has values greater than or equal to
10.

2. Create the following view.

3. How many of the invoices satisfy this criteria?_______________________
4. Furthermore, we want to see only orders with revenues that are at least

$10 and were placed in the year 2013 or later. We want to specify a
criterion for the InvoiceDate field. This is a bit tricky because SQL doesn’t
recognize “1/1/2013” as a date. We will need to use DATETIME(’2013-01-
01 00:00:00’) as our criterion format.

5. Create a new query Q040RecentHighRevenue in which only invoices that
were created in 2013 that generated at least $10 in revenue are listed.
(Hint: build this query off of Q030HighRevenue).

6. Write the WHERE clause you used here:
WHERE__

7. How many orders satisfy both the criteria (created in 2013 or later, and
greater than $10)?
__

Sorting data:
Defn: The ORDER BY clause allows records to be sorted by either
descending or ascending order. This clause must come last in the SQL code.
The syntax for this clause is:

ORDER BY FieldName DESC/ASC
Note: DESC indicates descending order, ASC indicates ascending order.
1. We want to view the most recent from “Q040RecentHighRevenue” first.
2. Edit “Q040RecentHighRevenue” and write the resulting SQL code here:

Using the SELECT query as a calculator:
Defn: The AS keyword allows the user to specify the name of a calculated
field in the SELECT clause. The syntax for this clause is:

SELECT Field1, Field2, EXPRESSION AS FieldName
1. In addition to selecting fields, we can use the SELECT clause to calculate

new fields based on the other fields in the field list.
2. We want to create a new query called “Q050RevenueByInvLine” based on

the “InvoiceLine” table to calculate how much revenue we generated from
each invoice line based on the price and the quantity of each track the
customer purchased.

3. Start writing the SQL code by indicating that we want to include the
following fields from “InvoiceLine”: InvoiceLineId, InvoiceId, TrackId,
UnitPrice, Quantity.

4. Extend the list of fields by putting a comma “,” after Quantity and typing
“UnitPrice*Quantity AS TotalRevenue”.

5. The full SELECT statement should be as follows:

6. Look at the view generated by the query. Unfortunately, all the invoice

lines required only a quantity of 1 of each TrackId, so this isn’t the most
interesting data to analyze.

Using other useful functions:
Defn: The CASE WHEN function is the IF-THEN-ELSE function in SQLite.
The syntax for CASE WHEN is as follows:

CASE WHEN [condition] THEN [result if true] ELSE [result if false] END
1. We want to categorize the revenues listed in “Invoice” as “High” if they are

at least $10, “Medium” if they are at least $5 or “Low.”
2. Let’s first categorize only the “High” revenues. Create a new view

“Q060RevenueClass” that lists the fields InvoiceId, CustomerId,

InvoiceDate, Total, and a new field called RevenueClass, which will label
our invoices as “High,” “Medium,” or “Low” using the CASE WHEN
function.

3. In order to label our “Medium” and “Low” revenues, we will need to use a

nested CASE WHEN function. In the view “Q060RevenueClass,” edit the
ELSE statement in our CASE WHEN function as follows:

4. Create a query based on “Q060RevenueClass” that selects all fields but

only records with RevenueClass=’Medium.’
5. Write the SQL statement for this query here:

6. How many ‘Medium’ invoices are there?___________________________

Defn: The IFNULL(x,y) function checks if there is missing data in field x and
replaces it with default value y if the value is null.
1. Create a query “Q070Customers” that checks for missing data in the field

Company of the “Customer” table. If the record is null, replace it with
“Student.”

2. Write the SQL statement for this query here:

Using Executable Commands

Create a new table using CREATE TABLE … AS:
1. A query, without the results it generates, does not take up very much

space, since it is only storing text. However, advanced queries on large
datasets may take a long time to run and retrieve the resulting dataset.
One way to speed things up is to store your results in a table, so that the
query will not need to run every time you wish to view your results. This
takes up more space than just storing the query, but it can be faster.

2. Let us now store the results of “Q060RevenueClass” into a table titled
“RevenueClass” using an executable query.

3. Click the pencil & paper icon shown in the screen shot below to “Open
SQL Query Editor”.

4. Execute the following command by typing in te following SQL code and

clicking on the “play button” icon outlined in the screen shot below:

5. Make sure that this table was created correctly and populated with the

dataset resulting from the query “Q060RevenueClass”. The table should
have 412 rows.

Delete records with the DELETE command:
1. Let’s delete all records from “Track” with a Genre of “Sci Fi & Fantasy”, or

a GenreId of 20.
2. View the contents of the “Track” table and note the number of rows.
3. Open the SQL Query Editor by clicking on the pencil & paper icon.
4. Execute the following SQL to view the number of rows you should delete:

5. Now execute the following SQL to delete the appropriate rows:

6. Re-open the “Track” table and make sure it has 26 fewer rows.

Change individual records with the UPDATE command:
1. We can use SQL to update the records in a table.
2. Suppose we have decided that we do not like that there are two records in

the “Playlist” table with name “Music”. We would like to change the name
of Playlist 8 to “Music 2” to avoid confusion.

3. Open the SQL Query Editor and execute the SQL in the screenshot
below. Note this SQL ends in a semicolon. In many SQL-based software
applications, you are required to end your commands with a semicolon. In
SQLiteStudio you can include it if you want, as we have done in this
screenshot, or you can drop it, as we have done in the rest of the
recitation.

4. Open the table “Playlist”. Verify that this change has been made correctly

by viewing the data in grid view.

Review

1. Congratulations! You now know the basics of structured query language
(SQL) as implemented by SQLiteStudio. You can now pick up and learn
other database packages that use SQL with this basic knowledge.

2. At this stage, you are familiar with the following keywords:
• SELECT
• FROM
• WHERE
• ORDER BY
• AS
• CASE WHEN…THEN…ELSE…END
• IFNULL
• CREATE
• DELETE
• UPDATE
• SET

