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Announcements

» submit recitation by 4:30pm ET Friday (last recitation!)

» logistic regression homework due 2:30pm ET Wednesday
(tomorrow)

> have a question about your grade? (eg, “should | go S/U or
GRV?")
— ask in TA office hours!
(we use breakout rooms so this discussion will be private)

» ask questions about project after class, or in office hours
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Project milestone Il rubric

Is the project driven by asking and answering interesting questions?

How well does the report answer the questions posed?

Are the visualizations easy to understand? Do they add value?

Is the report well-written and interesting?

Does the project use at least 3 tools from class?

>
>
>
>
>
>

>

Linear regression

Logistic regression

Checking assumptions of linear regression to ensure validity
of pvalues

Cross-validation or out-of-sample validation

Model selection

Assessing collinearity

Forecasting (with trend / with seasonality)

How creative are the analyses? Did this project surprise you? Did you
learn something?

Are the techniques they use well-explained and easy to understand?

Does the project comply with the technical requirements (eg, page
limit)? Is it well-formatted and pretty?

3/45



Outline

Forecasting: overview
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Forecasting time series

A time series, x1, X2, X3, ... is a data sequence observed over
time, for example,

» demand for parts

» sales of a product

» unemployment rate

In this segment of the course we study special methods for
forecasting time series.

» the idea is to develop an algorithm to track the time series
and to extrapolate into the future
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Outline

Constant mean model
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Constant mean model: introduction

Suppose demand for a product follows the (very) simple model

Here

vy

Xp =a-—+ €,

X, = demand for time period n

a is the expected demand — which is constant in this simple
model

€1, €2, . .. are independent with mean 0
the best forecast of a future value of x, is a

we want to estimate a and update the estimate as each
new x, is observed
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Constant mean model: forecasts

» Let X,(¢) be the ¢-step ahead forecast at time period n
> Stated differently, X,(¢) is the forecast at time n of demand
at time n+ /¢
> Let
~ X1t Xy
ah=—
n

» Then, in this simple model, the best forecasts at time n are

Xn(£) = @y, forall £ >0

8/45



Constant mean model: updating 3,

» In this simple model, a does not change, but our estimate
of a does

» Here is a simple way to update 3, to 3,1

(x4 + Xn) + Xnt1

é\n—i-l = n+1
n . 1
frd a X,
n+1 n n+1 n+1
= /a\n+ n+ 1(XI‘I+1 _/a\n)
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Advantages of the updating formula

The simple updating formula

5n+1 =ap+ m(xn+1 - é\n)

has several advantages:

» reduced storage
> we only store a,
» computational speed
» the mean need not be recomputed each time
» suggests ways to handle a slowly changing mean
» coming soon
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Outline

Simple exponential smoothing
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Lake Huron level — example with a slowly changing

mean
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Slowly changing mean model: introduction

» Now suppose that

Xn = ap + €p

where a, is slowly changing

» The forecast is the same as for the constant mean model:
Xn(¢) = a,, forall £ >0

» What changes is the way 3, is updated

» We need 3, to track a,
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Slowly changing mean: updating

» For a constant mean, the update is

~

antr1=an+ ——(xp11— 2
n+1 n n+ 1( n+1 n)
» For a slowly changing mean, the update is

ant1 = an+ a(xpt1 — 3n) = (1 — @)ap + axpy1

for a constant «
» « is adjusted depending on how fast a, is changing

> 0<ax<l
» faster changes in a necessitate larger a
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Demo: Exponential smoothing

https://github.com/madeleineudell/orie3120-sp2020/
blob/master/demos/forecasting.ipynb
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Exponential weighting
Start with the updating equation and iterate backwards:

a1 = (1—a)ap+ axp1

(1 —a){an-1(1 — a) + axp} + axpi1

(1—a)?3,.1 + (1 — a)ax, + axpr1

= (1- a)3a,, 2+ (1— a)zax,, 1+ (1 — a)ax, + axpi1

Q

a{xn_H +(1—a)x,+(1— a)zx,,_l

+(1—a)xp o+ +(1- a)”Xl}
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Exponential weighted moving average

Use previous page + summation formula for geometric series
(see next page):

ant1 =~

a{(l —a) i+ (1 —a)x+(1—a)’x 14+ (1 —a)”xl}

{(1 —a)%q41 + (1= )ty + (1 —a)xp1 + -+ (L — a)"xl}
- 1+(1-a)+--+(1—a)
Hence 3,11 is an exponentially weighted moving average

Large values of a mean faster discounting of the past values.
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Summing a geometric series

Assume |y| < 1so~v" = 0as n— o0

1_,yn+1 1
L+ 4ty = ~ (if n is large enough)
1—7v 1—v

NOWIet )/—l—a Ihen
n
l+(1—-a)+ - +(1—-a)"~ =

sincel—(1—a)=a.
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weight = a(1-a)"

0.4

0.3

0.2

0.1

0.0

Exponential weights: examples

Note: weights start at &« when n =10
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Outline

Holt-Winters
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uspop
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Forecasting with trends: example

Time

Census counts of US population
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Forecasting with trends and seasonality: example

air passengers

100 200 300 400 500 600

T T T T T T
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Time

Airline passenger miles

Note the seasonal pattern and trend
in this example

» these are typical of much
business data
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Holt method: forecasting with trend

For now, assume data has trend but no seasonality

Holt’s forecasting method uses a linear trend

estimate at time n of x,.¢ := X,(¢) = a, + B,,E

» nis “origin” — the point in time when forecasts are being
made

» [/ is the “lead” — how far ahead one is forecasting
» 3, is called the level

> B,, is called the slope

Both 3,, and b, are updated as we make more observations n
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Holt method: Updating the level

In the Holt model, the level 3, is updated by the equation:
ant1 = (1 —a)(an + bn) + axnt1
or, equivalently,

ant1=an+ (1 — )b, + a(xn41 — an)

> a3, + En is predicted value at time n+ 1 = lead time 1

» « is for updating the level and (3 for the slope (next)
Compare with previous update equation (for no-trend model):

ant1 = an+ a(xpr1 — an) = (1 — a)ap + axpi1
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Holt model: updating the slope

In the Holt model, the slope Bn is updated by the equation:
boi1 = (1= B)by + B(Gns1 — 30)

or, equivalently,

~ ~

bn+1 = bn + 6 {(3n+1 - /a\n) - En}
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Demo: Holt’s method

https://github.com/madeleineudell/orie3120-sp2020/
blob/master/demos/forecasting.ipynb
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Winters’ additive seasonal method

Winters extended Holt's method to include seasonality. The
method is usually called Holt-Winters forecasting

Let s be the period length:

| 2

vVVvyVvy

s = 4 for quarterly data

s = 12 for monthly data

s = 52 for weekly data

s = 13 for data collected over 4-week periods

s = 24 for hourly data
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Holt-Winters updating

Holt-Winters forecasting can use either of two types of updating

» additive

» multiplicative

These refer to how the trend and seasonal components are put
together

» the trend and seasonal components can be added or
multiplied
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Holt-Winters additive seasonal method

The forecasts are periodic

With the additive methods they are:

%n(0) = Bp+bpl+ Spio_s, for t=1,2,... s
= 3,,+b,,€+§,,+g_2s, for{=s+1,...,2s

and so forth
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Winters’ additive seasonal model: updating

A1 = (Xpi1 — Snr1s) + (1 —a) (@, + B,,)
bn+1 = 5(5n+1 - é\n) + (1 - 5)bn
Snt1 = Y(Xp41 — 3n+1) +(1—=7)Sn41-s

«, B, and ~ are “tuning parameters” that we need to adjust
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Why we need multiplicative seasonal models

air passengers
400
|
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|
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Time

Notice the multiplicative behavior

» the seasonal fluctuations are larger where the trend is larger
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Holt-Winters multiplicative seasonal method

%0(0) = (an+ bpl)Spivs, for t=1,2,... s
(an + En€)§n+g_25, for{=s+1,...,2s

and so forth
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Winters’ multiplicative seasonal model: updating

Go1 = a4 (1-a)(@E,+ by
5n+1 s
bn+1 - 5(‘/3\n+1 - 3n) + (]- - 5)bn

N X 1 A
Sni1 = 'YA’H_ + (1 - 7)5n+1—s
an+1
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Demo: Exponential smoothing in Python

https://github.com/madeleineudell/orie3120-sp2020/
blob/master/demos/forecasting.ipynb

Applications:
» Lake Huron
US population
CO2
Airline passengers

Sales
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Outline

Residuals
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Residuals

For given values of a, 3, and ~:

» 3,,b,,S,,...,5,_s are the level, slope, and seasonalities at
time n

» Xp+1 = Xn(1) = @5 + by + Spri1—s is the one-step ahead
forecast at time n

» €,11 = Xpt1 — Xn+1 IS the residual or one-step ahead
forecast error

36 /45



Choosing «, 3, and ~

«, B, and ~ are called “tuning parameters”

Suppose we have data xq,..., xpy:

» the usual way to select «, 3, and ~ is to minimize

N
SS(a, 8,7) = Y, &
n=N;+1

where the first Ny residuals are discarded to let the
forecasting method “burn-in”

» this technique is used by statsmodels, unless the user
specifies the parameters explicitly in the fit call
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Comparing forecasting methods and diagnosing

problem

» Two or more forecasting methods can be compared using

min SS(a, B,7)

a,Byy

» If a forecasting method is working well, then the residuals
should not exhibit autocorrelation

38/45



Air passengers: additive seasonal method

Air Passengers, additive Holt-Winters

residual
-40 0
|11

T T T T T T
1950 1952 1954 1956 1958 1960

Time

Air Passengers, additive Holt-Winters

ACF

-0.2 08

Notice some autocorrelation at small lags.
39/45



Air passengers: multiplicative seasonal method

Air Passengers, multiplicative Holt-Winters

residual
-40 0
L1l

T T T T T T
1950 1952 1954 1956 1958 1960

Time

Air Passengers, multiplicative Holt-Winters

0.8

ACF

Less autocorrelation than with additive model (good).
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Outline

Forecasting using regression
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Forecasting using regression

In some situations, regression can be used for forecasting

» in the following example, regression will be used to forecast
Stove Top product 285280
» this is the product that we forecast earlier with Holt-Winters
» the regression model will have seasonal effects but not
trend
P the seasonal effects will be introduced by using month as a
factor

» regression uses all the data to estimate the level and the
seasonal effects

P so there is no discounting of the past
P this helps us deal with the small amount of data
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Stove Top product 285280 forecasts using regression

g x

% g 1 *
; -*'.-*" "* * * */*\
” % %% --%’*x**@

month

black = predictions, red = 50% pred. int., blue = 95% pred. int.
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Holt-Winters product 285280 forecasts:

log transformed, zoom in

Holt-Winters forecasts,
id = 285280, log transformed

Sales
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Why is forecasting so difficult with this product?

Part Number 285280
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Sales patterns vary across years.
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