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Announcements

I submit recitation by 4:30pm ET Friday

I homework due 2:30pm ET Wednesday

I project milestone 1 due Sunday 4/19/2020 at noon
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Rubric for projects

I is the report well-written and complete?

I is the report driven by a few well-chosen questions?

I does the report manage to answer those questions?
I are the visualizations easy to understand?

I axes are labeled
I colors are easy to read
I chart type makes sense

I do the visualizations provide insight into the data?
I well chosen: not too many and not too few
I visualizations tell a story
I not just plots-of-everything
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Outline

Residual analysis

Checking for independence

Checking for nonlinearity

Checking for normally distributed noise

Checking for constant variance
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How to check assumptions that undergird statistics?

Statistics computed are valid if ε1, . . . , εn

1. independence I: are mutually independent

2. independence II: are independent of covariates

3. normality: are normally distributed

4. homoskedasticity: have a constant variance

To check whether these assumptions are true, we must look at
the residuals

Demo:
https://github.com/madeleineudell/orie3120-sp2020/

blob/master/demos/test-assumptions.ipynb
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Residuals analysis: mutual independence

Let’s look at each assumption and see how it can be checked.

Assumption 1. ε1, . . . , εn are mutually independent

I this assumption might be violated if the observations are in
time or spatial order

I check by: plotting ε̂i versus ε̂i−1

I should see no pattern
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Residuals analysis – checking mutual independence

with a scatterplot

This code will show scatterplots from data with mutual
independence.

# generate data

n = 500 # number of observations

eps = randn(n) # independent normal (0,1)

x = 10* rand(n) # uniform (0 ,10)

y = x + eps

# form and fit model

model = sm.OLS(y, x).fit()

resid = model.resid

plt.scatter(resid[:-1], resid [1:])
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Residuals analysis – checking mutual independence

with a scatterplot

This code will show scatterplots from data without mutual
independence.

# generate data

n = 500 # number of observations

a = 1 # use this to control the correlation

w = randn(n+1) # independent normal (0,1)

eps = w[:-1] + a*w[1:] # normal , not independent

x = 10* rand(n) # uniform (0 ,10)

y = x + eps

# form and fit model

model = sm.OLS(y, x).fit()

resid = model.resid

plt.scatter(resid[:-1], resid [1:])

8 / 43



Mutually independent residuals? yes/no
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Mutually independent residuals? yes/no
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Mutually independent residuals? yes/no
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Mutually independent residuals? yes/no
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Check mutual independence with autocorrelations

I plot the autocorrelation function:

r(t) = corr(ε̂i , ε̂i−t)

I r(t) should be 0 for all t > 0 (except for random variation)
I no (or only a few) autocorrelations should be outside the

test bounds
I t is called the lag

I the scatterplots only looked at lag = 1
I of course, we could have looked at other lags
I but autocorrelations let us look at all lags simultaneously
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Check mutual independence with autocorrelations

This code plots the autocorrelation for data with mutual
independence.

n = 500 # number of observations

eps = randn(n) # independent normal (0,1)

x = 10* rand(n) # uniform (0 ,10)

y = x + eps

# form and fit model

model = sm.OLS(y, x).fit()

resid = model.resid

plt.acorr(resid)
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Check mutual independence with autocorrelations

This code plots the autocorrelation for data without mutual
independence.

n = 500 # number of observations

a = 1 # use this to control the correlation

w = randn(n+1) # independent normal (0,1)

eps = w[:-1] + a*w[1:] # normal , not independent

x = 10* rand(n) # uniform (0 ,10)

y = x + eps

# form and fit model

model = sm.OLS(y, x).fit()

resid = model.resid

plt.acorr(resid)
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Check mutual independence with autocorrelations
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Residuals analysis – linear in the predictors

Assumption 2. model is linear in the predictors (the Xi ,j)

I equivalently, ε1, . . . , εn are independent of all Xi ,j

I Check by: plotting ε̂i versus Xi ,j for j = 1, . . . , p

I we should see that the average value of the ε̂i does not
depend on Xi ,j .

I if it does, then there is a problem
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Residuals analysis – linear in the predictors

Plot residuals vs covariates to test linearity

plt.subplot (2,1,1)

p = plt.scatter(x,y,marker=’o’,label =" observed ")

plt.scatter(x,yhat ,marker ="+", color="red",label=" predicted ")

plt.legend ()

plt.subplot (2,1,2)

plt.scatter(x,resid)

plt.xlabel ("x")

plt.ylabel (" residual ")
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Residuals analysis – linear in the predictors

This code forms a model for which outcome is not linear in the
predictor.

n = 500 # number of observations

eps = randn(n) # independent normal (0,1)

x = 10* rand(n) # uniform (0 ,10)

y = x + x**2 + eps

# form and fit model

model = sm.OLS(y, x).fit()

resid = model.resid

yhat = model.predict ()

20 / 43



Residuals analysis – linear in the predictors

Here’s how we fix the fit on the previous slide:
use the square as a feature

df = pd.DataFrame ()

df[’x’] = x

df[’xsq ’] = x**2

model = sm.OLS(y, df).fit()
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Residuals detect nonlinearity better than raw data

In the next slide, data are simulated from:

n = 200

x1 = beta(2,2,n)

x2 = randn(n)

y = sin(2* math.pi*x1) + 2*x2 + .23* randn(n)
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Residuals detect nonlinearity better than raw data
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Residuals: Scatter due to X2 is removed and nonlinearity in X1

is revealed
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Checking for nonlinearity
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Checking for nonlinearity
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Residuals analysis – normal distribution

Assumption 3. ε1, . . . , εn are normally distributed

I normal probability plot

I should see a straight line

I a pattern means skewness or heavy-tails
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Interpreting normal plots

linear = normal
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Interpreting normal plots

concave = left-skewed
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Interpreting normal plots

convex = right-skewed
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Interpreting normal plots

concave-convex = heavy-tailed
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Interpreting normal plots

convex-concave = light-tailed
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Checking for normal errors

This code generates q-q plots for normal residuals:

n=500

eps = randn(n) # normal residuals

x = 10* rand(n)

y = x + eps

model = sm.OLS(y,x).fit()

sm.qqplot(model.resid , line =’45’);
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Checking for normal errors

This code generates q-q plots for residuals that are not normal:

n=500

eps = exp(randn(n)) # not normal

x = 10* rand(n)

y = x + eps

model = sm.OLS(y,x).fit()

sm.qqplot(model.resid , line =’45’);
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Checking for normal errors
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Checking for normal errors
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Checking for normal errors
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Residuals analysis – constant variance

Assumption 4. ε1, . . . , εn have a constant variance

I plot absolute residuals against fitted values
I plot absolute residuals against Xi ,j for each j

I should see that the distribution does not depend on Xi,j

I if it does, then the variance is not constant

I we call non-constant variance “heteroscedasticity”

37 / 43



Checking for normal errors

This code generates absolute residual plots for constant variance:

n=500

eps = randn(n)

x = 10* rand(n)

y = x + eps

model = sm.OLS(y,x).fit()

plt.scatter(x,np.abs(model.resid))
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Checking for normal errors

This code generates absolute residual plots for non-constant
variance:

n=500

x = 10* rand(n)

eps = x*randn(n) # variance of noise depends on x

y = x + eps

model = sm.OLS(y,x).fit()

plt.scatter(x,np.abs(model.resid))
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Checking for non-constant variance
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Strategy for regression data analysis:

1. Decide: what problem(s) are you trying to solve?
I keep the problem in mind while doing the remaining steps

2. Find (or collect) useful data

3. Find a useful model
I all models are wrong (George Box)
I some models are useful

4. Check model
I how well does the model fit the data?

5. Modify model, if necessary

6. Use model to solve problem(s)
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Model selection

which features should appear in your model? two regimes

small data: (this class)

I use domain knowledge to decide features

I drop features with very small p values

big data: (ORIE 4741)

I use cross-validation to select best model

I use held-out test set to assess model performance
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Model selection and p values

I if you fit very few models, and assumptions hold, then p
values are reliable

I p values are not reliable if you fit many models or select
from many features
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