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Announcements

» submit recitation by 4:30pm ET Friday
» homework due 2:30pm ET Wednesday
» project milestone 1 due Sunday 4/19/2020 at noon
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Rubric for projects

» is the report well-written and complete?
» is the report driven by a few well-chosen questions?

» does the report manage to answer those questions?
» are the visualizations easy to understand?

> axes are labeled
» colors are easy to read
> chart type makes sense

» do the visualizations provide insight into the data?

» well chosen: not too many and not too few
» visualizations tell a story
P not just plots-of-everything
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Outline

Residual analysis
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How to check assumptions that undergird statistics?

Statistics computed are valid if €1, ..., ¢,

1. independence |: are mutually independent

2. independence II: are independent of covariates
3.
4

. homoskedasticity: have a constant variance

normality: are normally distributed

To check whether these assumptions are true, we must look at
the residuals
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How to check assumptions that undergird statistics?

Statistics computed are valid if €1, ..., ¢,

1. independence |: are mutually independent

2. independence II: are independent of covariates

3. normality: are normally distributed

4. homoskedasticity: have a constant variance
To check whether these assumptions are true, we must look at
the residuals

Demo:
https://github.com/madeleineudell/orie3120-sp2020/
blob/master/demos/test-assumptions.ipynb
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Residuals analysis: mutual independence

Let's look at each assumption and see how it can be checked.

Assumption 1. €3, ..., €, are mutually independent

» this assumption might be violated if the observations are in
time or spatial order

» check by: plotting €; versus €;_1
» should see no pattern

6/43



Residuals analysis — checking mutual independence
with a scatterplot

This code will show scatterplots from data with mutual
independence.

# generate data
n = 500 # number of observations

eps = randn(n) # independent normal (0,1)
bie = 10*rand(n) # uniform(0,10)
v = x + eps

# form and fit model
model = sm.OLS(y, x).fit ()
resid = model.resid

plt.scatter(resid[:-1], resid([1:])
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Residuals analysis — checking mutual independence

with a scatterplot

This code will show scatterplots from data without mutual
independence.

# generate data

n = 500 # number of observations

a =1 # use this to control the correlation
W = randn(n+1) # independent normal(0,1)

eps = w[:-1] + a*w[1:] # normal, not independent
X = 10*rand(n) # uniform(0,10)

y = x + eps

# form and fit model
model sm.0LS(y, x).fit ()
model .resid

resid

plt.scatter(resid[:-1], resid([1:])
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Mutually independent residuals? yes/no
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Mutually independent residuals? yes/no
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Mutually independent residuals? yes/no
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Mutually independent residuals? yes/no
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Check mutual independence with autocorrelations

» plot the autocorrelation function:
r(t) = corr(€;, €—¢)

» r(t) should be 0 for all t > 0 (except for random variation)

> no (or only a few) autocorrelations should be outside the
test bounds

> tis called the lag

» the scatterplots only looked at lag = 1

» of course, we could have looked at other lags
» but autocorrelations let us look at all lags simultaneously
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Check mutual independence with autocorrelations

This code plots the autocorrelation for data with mutual
independence.

n = 500 # number of observations

eps = randn(n) # independent normal (0,1)
X = 10*rand(n) # uniform(0,10)

y = x + eps

# form and fit model
model = sm.O0LS(y, x).fit()
resid = model.resid

plt.acorr(resid)
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Check mutual independence with autocorrelations

This code plots the autocorrelation for data without mutual
independence.

n = 500 # number of observations

a =1 # use this to control the correlation
W = randn(n+1) # independent normal (0,1)

eps = w[:-1] + a*w[1l:] # normal, not independent
X = 10*rand(n) # uniform(0,10)

y = x + eps

# form and fit model
model = sm.OLS(y, x).fit ()
resid = model.resid

plt.acorr(resid)

15/43



Check mutual independence with autocorrelations

ACF of Residuals
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quick poll: (yes) independent (no) not independent
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Check mutual independence with autocorrelations

ACF of Residuals
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Residuals analysis — linear in the predictors

Assumption 2. model is linear in the predictors (the X; ;)

>
>
>

equivalently, €1,..., €, are independent of all X; ;
Check by: plotting € versus X;; for j=1,...,p

we should see that the average value of the €; does not
depend on X; ;.

if it does, then there is a problem

18/43



Residuals analysis — linear in the predictors

Plot residuals vs covariates to test linearity

P=

plt.

plt.
plt.

plt.
plt.
plt.
plt.

subplot(2,1,1)
plt.scatter(x,y,marker="0’,label="observed")
scatter (x,yhat ,marker="+",color="red", label="
legend ()

subplot (2,1,2)
scatter (x,resid)
xlabel ("x"

ylabel ("residual")
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Residuals analysis — linear in the predictors

This code forms a model for which outcome is not linear in the
predictor.

n = 500 # number of observations

eps = randn(n) # independent normal (0,1)
X = 10*rand(n) # uniform(0,10)

y = X + X**2 + eps

# form and fit model

model = sm.O0LS(y, x).fit ()
resid model .resid

yhat = model.predict ()
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Residuals analysis — linear in the predictors

Here's how we fix the fit on the previous slide:
use the square as a feature

df = pd.DataFrame ()

df [’x’] = x

df [’xsq’] = x*x*2

model = sm.0LS(y, df).fit ()
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Residuals detect nonlinearity better than raw data

In the next slide, data are simulated from:

n = 200
x1 = beta(2,2,n)
x2 = randn(n)

y = sin(2*math.pi*xl) + 2%x2 + .23%randn(n)
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Residuals detect nonlinearity better than raw data
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Checking for nonlinearity
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Checking for nonlinearity
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Residuals analysis — normal distribution

Assumption 3. €1,..., €, are normally distributed

» normal probability plot
» should see a straight line

» a pattern means skewness or heavy-tails
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Sample Quantiles

Interpreting normal plots

linear = normal

-2 -1 0 1
Theoretical Quantiles
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Sample Quantiles

Interpreting normal plots

concave = left-skewed
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Sample Quantiles

Interpreting normal plots

convex = right-skewed
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Sample Quantiles

Interpreting normal plots

concave-convex = heavy-tailed
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Sample Quantiles

Interpreting normal plots

convex-concave = light-tailed
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Theoretical Quantiles
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Checking for normal errors

This code generates g-q plots for normal residuals:

n=500

eps = randn(n) # normal residuals
x = 10*rand(n)

y = X + eps

model = sm.0LS(y,x).fit()

sm.qqplot (model.resid, line=’45’);
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Checking for normal errors

This code generates g-q plots for residuals that are not normal:

n=500

eps = exp(randn(n)) # not normal
x = 10*rand(n)

y = X + eps

model = sm.0LS(y,x).fit()

sm.qqplot (model.resid, line=’45’);
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Checking for normal errors
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Checking for normal errors

Sample Quantiles

-3 -2 -1 0 1 2 3
Theoretical Quantiles

poll: (yes) residuals are normal (no) residuals are not normal
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Checking for normal errors

N
.
® o

Sample Quantiles

-3 T T T T T T
-3 -2 -1 0 1 2 3 4 5

Theoretical Quantiles

poll: (yes) residuals are normal (no) residuals are not normal
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Residuals analysis — constant variance

Assumption 4. €1,...,€, have a constant variance

» plot absolute residuals against fitted values
» plot absolute residuals against X;; for each j

> should see that the distribution does not depend on X; ;
> if it does, then the variance is not constant

» we call non-constant variance “heteroscedasticity”
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Checking for normal errors

This code generates absolute residual plots for constant variance:

n=500

eps = randn(n)

x = 10*rand(n)

y = x + eps

model = sm.0LS(y,x).fit()
plt.scatter(x,np.abs(model.resid))

38/43



Checking for normal errors

This code generates absolute residual plots for non-constant
variance:

n=500

x = 10*rand(n)

eps = x*randn(n) # variance of noise depends on x
y = x + eps

model = sm.0LS(y,x).fit()
plt.scatter(x,np.abs(model.resid))
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Checking for non-constant variance
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Strategy for regression data analysis:

. Decide: what problem(s) are you trying to solve?

» keep the problem in mind while doing the remaining steps
. Find (or collect) useful data

. Find a useful model

> all models are wrong (George Box)
» some models are useful

. Check model
» how well does the model fit the data?

5. Modify model, if necessary

6. Use model to solve problem(s)
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Model selection

which features should appear in your model? two regimes

small data: (this class)

» use domain knowledge to decide features

» drop features with very small p values
big data: (ORIE 4741)

» use cross-validation to select best model

» use held-out test set to assess model performance
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Model selection and p values

» if you fit very few models, and assumptions hold, then p
values are reliable

» p values are not reliable if you fit many models or select
from many features
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	Residual analysis

