
Big Data is Low Rank

Madeleine Udell

May 3, 2019

Abstract

This column defends the assertion that big data is
low rank and considers implications for data scientists
and opportunities for optimizers.

1 Introduction

Low rank models have demonstrated effective perfor-
mance in a wide range of data science applications.
In this column, we survey a few of the more surpris-
ing applications of low rank models in data science,
introduce a mathematical explanation for their ef-
fectiveness, and survey optimization approaches and
challenges in fitting these models.

We’ll start by giving a flavor of the challenges in
these data science applications. Suppose you have
collected information (features) on a number of dis-
tinct entities (examples). Often these examples are
people. Features might include

• the opinions of every respondent to a survey,

• the purchase and browsing history for each cus-
tomer who has visited an e-commerce website,

• the financial history of a credit card applicant,
or

• the medical record of every patient at a hospital,

in addition to demographic characteristics.
In other applications, examples might be the fol-

lowing:

• Securities in a financial model. Here, features
might include stock performance, accounting
metrics, and indicators of environmental stew-
ardship and of sound corporate governance.

• Samples of tumors from different individu-
als. Here, features might include immunologi-
cal markers, size, location, vascularization, and
indicators of key mutations.

• Geolocations. Here, features might include lo-
cal demographics or daily weather over the past

year.

• Datasets or problem instances. Here, features
might include performance of various algorithms
and heuristics to fit the dataset or solve the prob-
lem.

In the applications above, the features can be nu-
meric, Boolean, ordinal, or categorical. Even among
numeric features, the data can be on wildly different
scales or follow very different statistical distributions.
Some data may be corrupted with gross errors: sur-
vey respondents may lie or misunderstand the ques-
tion, data may be improperly coded, or doctors in-
putting their patients’ data may make a mistake in
haste. Medical records contain instances of babies
born weighing hundreds of pounds, and credit card
records contain applicants whose credit score was 999
(out of 800).

Furthermore, many entries may be missing: ques-
tions skipped on surveys, patients who died or
dropped out of a panel study, new questions added
several years into the study, medical tests deemed un-
necessary, sensors that failed, concentrations below a
machine’s sensitivity threshold, locations covered by
clouds, eyes covered by sunglasses, algorithms that
took too long to run. Notice that whether or not
each entry is missing is always observed. The pat-
tern of missingness may itself be informative about
the value of the entry, or it may not be.

Other information is sometimes available. For ex-
ample, the data may have internal structure (vector,
matrix, tensor), Perhaps each observation is associ-
ated with some relevant covariates or is known to
have been recorded at a particular time. The data
may not be available all at the same time, but rather
as a stream of observations.

Data analysts may be interested in a variety of re-
lated questions. Can we impute missing data and de-
noise observed data? Which features are correlated?
Which examples are similar? How many effective fea-
tures are present, and how many are just noise? How
can this dataset best be used to predict some other

1

quantity of interest for each example? If the dataset
spans a long time period, have the statistics of the
data changed during that period and, if so, when?
Can we learn from the dataset without snooping into
the future? When the dataset is large, developing
efficient algorithms to answer these questions is im-
portant.

This column will discuss optimization methods to
answer these questions (and more) by identifying low
rank structure in the dataset. These techniques have
been studied for over a century, and the literature
is correspondingly large. We cannot hope to provide
a comprehensive survey here. Instead, we present a
few surprising applications of these methods, intro-
duce the mathematics of low rank models, discuss
optimization methods to fit these models, and exam-
ine why these techniques are effective for such a wide
variety of problems.

2 Model

Suppose that the data is collected into a table A with
m rows (one for each example) and n columns (one
for each feature). The value of the jth feature for the
ith example is written as Aij . Some entries may also
be missing or unobserved. Define Ω ⊆ [m]× [n] to be
the set of observed entries.

Low rank models make one simple—and seemingly
strong—assumption about the data. They posit that
every example i = 1, . . . ,m can be represented by
a low-dimensional vector xi ∈ Rk and that every
feature j = 1, . . . , n can be represented by a low-
dimensional vector yj ∈ Rk so that

xTi yj ≈ Aij (1)

for every observation (i, j) ∈ Ω. We call these vectors
the low-dimensional representations of each example
and feature.

Notice that the left-hand side of Eq. (1) is a num-
ber, while the right-hand side can be Boolean, ordi-
nal, or categorical. What can “≈” mean in this case?
The solution we adopt here is to choose a loss func-
tion ` and to define ≈ so that

`(xTi yj , Aij) is small ⇐⇒ xTi yj ≈ Aij .

We’ll discuss a few common loss functions in Sec-
tion 6; for a more extensive review, see (UHZB16) or
the software package LowRankModels.jl.

Collecting the representations into matricesX
 =

—x1—
...

—xm—

 , [
Y

]
=

 | |
y1 · · · yn
| |

 ,
we see the parameter k controls the rank of the matrix
XY .

To fit a low rank model, we seek representations
xi ∈ Rk for each example i = 1, . . . ,m and yj ∈ Rk

for each feature j = 1, . . . , n to minimize the sum of
the losses over the observed entries,∑

(i,j)∈Ω

`(xTi yj , Aij). (2)

Sometimes this loss is minimized together with a reg-
ularizer that controls the complexity of the learned
representations. We’ll discuss algorithms for this
problem in Section 5.

Let’s first remark on how a low rank model can
address the data science challenges posed above:

• To accommodate data tables with heterogeneous
entries, use different loss functions for each kind
of observation.

• To impute or denoise observations, use the in-
ner product xTi yj to predict the observed value.
When the observations come from some re-
stricted domain A, the loss function ` : R×A →
R maps the number xTi yj to a prediction Âij

via Âij = argmina `(x
T
i yj , a). Notice that the

domain of ` ensures Âij ∈ A.

• To determine which features are correlated or
which examples are similar, compare their low-
dimensional representations.

• To assess the effective dimension (rank) k, use
cross-validation: leave out some of the obser-
vations as a validation set, fit a model to the
remaining observations for each value of k un-
der consideration, and choose the value of k that
minimizes the loss on the validation set.

• When items are not missing at random, treat-
ing each observation equally can lead to a biased
estimate. Instead, estimate the propensity of ob-
serving an entry and weight observations by the
inverse propensity score to achieve a consistent
estimate (SSS+16).

• Low rank models use a flexible optimization for-
mulation that easily accommodates covariates
(FM13, PU17, RWJ+18)

2

https://github.com/madeleineudell/LowRankModels.jl

• It’s straightforward to design an optimization
procedure to avoid snooping from time series
data. Suppose that each example i is observed
at time i. Use a block coordinate descent or
block coordinate minimization algorithm. The
key to prevent snooping is to order the blocks
so that the representation learned for example i
never depends on observations from future times
i + 1, i + 2, . . . For more detail, see the recent
review (CBL18).

• The representations xi of each example i =
1, . . . , n can be used as features in other learning
models. The main advantages are that these rep-
resentations are lower dimensional, real-valued,
and fully observed, in contrast with the origi-
nal features. It is also possible to learn repre-
sentations that simultaneously fit the observed
features well and perform well for a supervised
task; see, for example, (RGC+08).

3 Applications

We first review four different applications of low rank
models, drawn from the author’s research. These ap-
plications are meant to give a flavor of the wide vari-
ety of problem domains in which low-rank structure
appears and to indicate the kinds of challenges these
techniques can address.

Medical informatics. Medical treatments suc-
ceed when they correctly identify which patient would
benefit from a given treatment. In order to learn
personalized treatments from observational data, one
necessary first step is to identify patients with simi-
lar “phenotypes”: those with similar symptoms, sim-
ilar comorbidities, and (we hope) similar responses
to each treatment. Identifying clusters of similar pa-
tients from medical records is difficult: observations
are heterogeneous and may be very sparse. Neverthe-
less, low rank models have been used successfully to
impute missing data and to identify groups of similar
patients (SLW+16).

Automated machine learning. In automated
machine learning (AutoML), the goal is to quickly
identify an algorithm (together with its hyperpa-
rameters) that will perform well on a new dataset.
Yang et al. (YAKU18) propose to learn which algo-
rithms will accurately fit a new dataset by using a
low rank model. Here, examples are datasets, and

each feature is the performance of a particular algo-
rithm. Observations are made by running an algo-
rithm on a dataset. The first (slow) step is to collect
observations by running many algorithms on many
datasets. Surprisingly, the resulting table of observa-
tions has a spectrum that decays rapidly. The sec-
ond (fast) step determines the best algorithm for a
new dataset: Yang et al. (YAKU18) suggest running
a small number of (fast, informative) algorithms on
the new dataset. These observations can be used to
impute the performance of all other algorithms and to
choose the algorithm(s) with the best predicted per-
formance. The resulting AutoML method is compet-
itive with the state of the art in automated machine
learning.

Understanding categorical variables. High-
dimensional categorical variables often stymie data
analysis: using a standard one-hot encoding inflates
the number of variables and can result in overfit-
ting. Low rank models can be used to to embed these
high-dimensional categoricals into a low-dimensional
vector space. Fu and Udell (FU) show how to use
this approach to reduce the dimension of the fea-
ture “zip code”(with 32,989 nominal values) to a ten-
dimensional vector. Substituting the zip code feature
by these low-rank representations of the zip code al-
lows for better predictions of labor code violations by
businesses in each zip code compared with standard
approaches.

Causal inference. To correctly identify the causal
effect of a treatment on an outcome from obser-
vational data, one must control for possible con-
founders: other covariates that may influence both
the treatment and the outcome. However, controlling
for more and more (noisy) covariates increases the
variance of the model; worse, some covariates may
not be observed for all examples. Instead, Kallus
et al. (KMU18) suggest controlling for latent con-
founders by fitting a low rank model to the covari-
ates. The low rank representations of the covari-
ates are identified as the latent confounders. Em-
pirically, controlling for these latent confounders im-
proved the accuracy of every causal inference method
tested (KMU18).

4 Why Low Rank?

Why do low rank models perform so well in such a
wide variety of problems? A data table can be well

3

approximated by a low rank model if there are

• a small number of latent features for each row
and

• a small number of latent features for each column

• so that entries of the data table are approxi-
mately (functions of) the inner product of the
row latent features with the column latent fea-
tures.

Two elements of this story are surprising. Why
should row and column latent features be low dimen-
sional? And why should they interact linearly to form
the data?

A more general (and perhaps more plausible)
model is to choose some high-dimensional row and
column latent features αi ∈ A ⊆ RN and βj ∈ B ⊆
RN (where N may be large), and some arbitrary
function g : RN × RN → R, and to model entries
as g(αi, βj). We call such a model a latent variable
model.

Now we can say why the effectiveness of low rank
models should not be a surprise. Under very general
conditions on g, A, and B,1 the matrix with entries
g(αi, βj) is approximately low rank. More concretely,
consider the problem of approximating a matrix A ∈
Rm×n by a lower-rank matrixX so that the difference
between X and A is no greater than ε on each entry.
How does rank of this ε-approximation to A change
with m and n? Udell and Townsend (UT18) show
that the optimal value of the problem

minimize rank(X)
subject to ‖X −A‖∞ ≤ ε

grows as O(log(m+ n)/ε2). That is, the rank of the
matrix A grows much less quickly than its dimension.
Hence large enough datasets have low relative rank:
big data is low rank.

The idea of the proof is simple. For each α, expand
g around β = 0 by its Taylor series

g(α, β)− g(α, 0)

= 〈∇g(α, 0), β〉+ 〈∇2g(α, 0), ββ>〉+ . . .

=

 ∇g(α, 0)
vec(∇2g(α, 0))

...


>  β

vec(ββ>)
...

 ,
1It suffices for the sets A and B to be bounded and

for g to be analytic with bounded derivatives. Udell and
Townsend (UT18) show that the same result holds under more
general conditions.

where we have collected terms depending on α and
on β into two vectors. Notice that we have approx-
imated g(α, β) by an inner product. Since g is ana-
lytic, we can achieve an approximation with error ε
by truncating the expansion after O(log(1/ε)) terms.

If α and β are themselves low dimensional (for ex-
ample, univariate), this immediately gives a low rank
factorization of A. Otherwise, apply the Johnson-
Lindenstrauss lemma (JL84) to reduce the dimension
of the vectors. Udell and Townsend (UT18) use a
variant of the lemma that bounds the error in the
inner product:

Lemma 1 (Variant of the Johnson–Lindenstrauss
lemma (UT18)). Consider x1, . . . , xn ∈ RN . Pick
0 < ε < 1 and set r = d8(log n)/ε2e. A linear map
Q : RN → Rr exists such that for all 1 ≤ i, j ≤ n,∣∣xTi xj − xTi QTQxj

∣∣ ≤ ε (‖xi‖2 + ‖xj‖2 − xTi xj
)
.
(3)

The technical conditions on the function g and the
sets A and B guarantee that the right-hand side of
Eq. (3) is bounded by a constant, finishing the proof.

5 Fitting Low Rank Models

5.1 PCA

When observations are numeric, it’s traditional to
measure error with the quadratic loss `(u, a) = (u −
a)2, which makes the optimization problem Eq. (2)
particularly easy to solve when every entry is ob-
served. In this case, Eq. (2) is known as principal
components analysis (PCA):

minimize

m∑
i=1

n∑
j=1

(Aij − Zij)
2 = ‖A− Z‖2F

subject to rank(Z) ≤ k.
(4)

Here, we introduce the variable Z = XY ∈ Rm×n;
representations X ∈ Rm×k and Y ∈ Rk×n can be
recovered by using any (rank-revealing) factorization
of the matrix Z.

Optimization problems with rank constraints are
in general challenging. This problem is the one ex-
ception: it can be solved easily by using the singu-
lar value decomposition (SVD). Let σ1, . . . , σk be the
first k singular values of A, and let u1, . . . , uk and
v1, . . . , vk be the first k left and right singular vec-

4

tors, respectively. A solution to Eq. (4) is

Z? =

k∑
i=1

σiuiv
T
i ,

which is unique so long as the singular values are.
The top few singular values are particularly easy to
compute: indeed, in Hotelling’s 1933 paper introduc-
ing PCA, he computes them by hand using power
iteration (Hot33).

5.2 Missing Entries

The solution is not as straightforward when some en-
tries are missing. One simple heuristic is to guess a
value for each of the missing entries and then solve the
resulting (completely observed) problem with PCA.
Often, missing values are replaced by the column
mean. This heuristic is easy to understand or to code,
but it does not work when a large fraction of the en-
tries are missing.

Two general strategies—convex and nonconvex—
are used for fitting low rank models with many miss-
ing entries. These methods are often described for
quadratic losses, but they work well for any convex
differentiable loss.

Convex methods. Convex methods model the
product Z = XY ∈ Rm×n rather than modeling the
low-dimensional representations explicitly, and they
do not explicitly constrain the rank of the model. In-
stead, they introduce a regularizer or constraint on
Z—usually involving the nuclear norm ‖Z‖∗, which
is the 1-norm of the singular values of Z—to encour-
age a low-rank solution. The resulting problem is a
large-scale semidefinite program:

minimize
∑

(i,j)∈Ω

(Aij − Zij)
2 + λ‖Z‖∗ (5)

with variable Z ∈ Rn. Algorithms include interior
point methods (for small problems), proximal gradi-
ent methods, and conditional gradient methods.

While interior point methods scale poorly, first-
order methods are more promising: the gradient of
the loss term in Eq. (5) is sparse, and so it is easy to
manipulate even for very large problems. Proximal
gradient methods (MHT10, MGC11, CCS10) com-
pute the SVD of an m × n matrix at each iteration:
this step can be prohibitively slow in high dimensions.
The conditional gradient method (CGM) for Eq. (5)

avoids the SVD (Jag13); instead, it moves in the di-
rection of the top singular vector of the gradient. As
an added benefit, the rank of the iterate is bounded
by the number of iterations. The storage require-
ments of CGM can be further reduced by sketching
the decision variable, which gives an optimal memory
algorithm for Eq. (5) (YUTC17).

Nonconvex methods. Nonconvex methods search
over the matrices X and Y and thereby (implicitly)
constrain the rank of the product XY . The resulting
problem is nonconvex and may have local minima
and other suboptimal stationary points. Algorithms
include gradient descent, alternating minimization,
alternating proximal gradient methods, and manifold
optimization.

Some variants allow the dimension k to vary
in order to avoid or escape bad stationary points
(JBAS10). This strategy exploits the connection be-
tween the convex and nonconvex problem formula-
tion. Let’s describe one such method. When progress
of the nonconvex method slows, map the nonconvex
iterate (X,Y) ∈ Rm×k × Rk×n to the matrix Z =
XTY ∈ Rm×n. Consider Z as an iterate of CGM,
and take one step of the CGM method to form Z ′.
This step increases the rank of the iterate by at most
one: rank(Z ′) ≤ rank(Z)+1. Factor Z ′ as Z ′ = X ′Y ′

to obtain a new iterate (X ′, Y ′) ∈ Rm×k+1×Rk+1×n

to use in the nonconvex method, and continue.

Methods such as manifold optimization (BMAS14)
guarantee convergence to a second-order stationary
point. Furthermore, all such points are optimal for
Eq. (5) if k = O(

√
n) (BVB18). Unfortunately this

result is tight: for smaller k, second-order critical
points are not generically optimal (WW18).

Statistical guarantees. When observations are
generated from a true low rank matrix via a sim-
ple statistical model (e.g., with entrywise Gaussian
noise), one can prove that both convex and noncon-
vex optimization methods recover the true matrix
as the number of observations increases, for appro-
priate choices of the parameters. Examples of this
approach include (CP09, CR08, GLM16, GAGG13,
KU16, KMO10, NW11); see (CLC18) for a recent re-
view of nonconvex recovery results. Convex methods
and manifold optimization (for large enough k) pro-
vide guaranteed solutions for the convex relaxation
Eq. (5). When the data generating distribution is
unknown, however, all methods should be regarded
as heuristics for minimizing Eq. (2).

5

6 Loss Functions

Choosing the right loss function can substantively im-
prove the imputation error of the model (ABKKW18,
SLW+16). In fact, this approach can even result in
smaller squared error! The loss function induces a
nonlinear mapping from the parameter z = xTi yj to

the imputed value Âij via Âij = argmina `(z, a), so
the resulting matrix need not be low rank. Anderson-
Bergman et al. (ABKKW18) show examples of real
datasets for which a low rank model of rank k, fit
by using a data-driven loss function, induces imputa-
tions Â that improve on the square error of the best
rank-k model:∑

(i,j)∈Ω

(Âij −Aij)
2 ≤ inf

rank(Z)≤k

∑
(i,j)∈Ω

(Zij −Aij)
2.

What loss function to pick? A common choice in
the theoretical literature is to consider a paramet-
ric noise distribution, often in the exponential family,
and choose as a loss function the negative log likeli-
hood of the noise distribution. This approach has the
advantage of offering provable guarantees, but it can
be difficult to validate the choice of noise model for
real data. Instead, a recent suggestion is to learn the
noise distribution from the data (ABKKW18, HL12).
Unfortunately, these loss functions are often signifi-
cantly more challenging to optimize.

We may also pick a loss function by considering our
qualitative goals in fitting the model. When the goal
is to predict individual entries of a matrix, it’s often
more natural to measure the mean absolute error of
a model, rather than the mean square error, and so
we’d measure error in the (entrywise) 1-norm. Or
we may want a model that fits every entry of the
matrix well; in this case, we’d want to minimize the
maximum absolute error.

If the data takes values from a discrete set (e.g.,
{0, 1} or {1, 2, 3, 4, 5}), it’s natural to round the en-
tries from our low rank model so that imputed values
have the same domain. In this case, we may want to
know how often the (rounded) model gets the answer
right or wrong and so measure the misclassification
error : the number of entries xTi yj for (i, j) ∈ Ω that
don’t round to Aij .

When the loss functions are not differentiable or are
not convex, the corresponding methods (using, for ex-
ample, subgradients in place of gradients) lack guar-
antees and tend to work much more poorly. When the
loss functions are not continuous (like the misclassifi-
cation error) or are not separable entrywise (like the

maximum absolute error), the problem is even more
severe. For example, finding a rank-1 matrix that
minimizes the maximum absolute error to a set of
observations is NP hard (GS17).

Various heuristics to solve these problems have
been proposed (GS17, UT18). In practice, a com-
mon strategy is to replace these error metrics by func-
tions that are easier to optimize: in place of the in-
finity norm, quadratic loss (UT18); in place of the
1-norm, elementwise Huber loss (UHZB16); in place
of misclassification loss, hinge loss or ordinal hinge
loss (SRJ04, UHZB16). The best model is chosen
by fitting the surrogate loss function for a range of
different parameters and choosing the one that pro-
duces the lowest error with respect to the original
loss function. Interestingly, under strong statisti-
cal assumptions, even simple algorithms like gradient
descent applied to the nonconvex formulation—still
with quadratic objective!—can be proven to control
entrywise error (MWCC17).

7 Conclusion

Low rank models can be used to answer a wide variety
of questions in data science. They can adapt to per-
versities in the data including missing and heteroge-
neous entries, and they perform well across a diverse
array of problems. Numerous optimization methods
are available to fit low rank models, some with prov-
able statistical recovery guarantees and others that
guarantee convergence to the solution of a particu-
lar relaxation, Eq. (5). These methods yield useful
results in practice. Minimizing the original rank-
constrained objective, Eq. (2), for general data dis-
tributions, is more challenging. Moreover, substan-
tial room exists to improve optimization heuristics
for fitting low rank models involving nonsmooth or
discontinuous loss functions.

References

[ABKKW18] Clifford Anderson-Bergman, Tamara G
Kolda, and Kina Kincher-Winoto. XPCA:
Extending PCA for a combination of dis-
crete and continuous variables. arXiv
preprint arXiv:1808.07510, 2018.

[BMAS14] Nicolas Boumal, Bamdev Mishra, P-A Ab-
sil, and Rodolphe Sepulchre. Manopt, a
matlab toolbox for optimization on man-
ifolds. The Journal of Machine Learning
Research, 15(1):1455–1459, 2014.

6

[BVB18] Nicolas Boumal, Vladislav Voroninski, and
Afonso S Bandeira. Deterministic guar-
antees for Burer-Monteiro factorizations
of smooth semidefinite programs. arXiv
preprint arXiv:1804.02008, 2018.

[CBL18] Y Chi, L Balzano, and YM Lu. A modern
perspective on streaming pca and subspace
tracking: The missing data case. Proceed-
ings of the IEEE, 2018.

[CCS10] Jian-Feng Cai, Emmanuel J Candès, and
Zuowei Shen. A singular value threshold-
ing algorithm for matrix completion. SIAM
Journal on Optimization, 20(4):1956–1982,
2010.

[CLC18] Yuejie Chi, Yue M Lu, and Yuxin Chen.
Nonconvex optimization meets low-rank
matrix factorization: An overview. arXiv
preprint arXiv:1809.09573, 2018.

[CP09] E. Candès and Y. Plan. Matrix completion
with noise. CoRR, abs/0903.3131, 2009.

[CR08] E. Candès and B. Recht. Exact matrix
completion via convex optimization. CoRR,
abs/0805.4471, 2008.

[FM13] William Fithian and Rahul Mazumder.
Flexible low-rank statistical modeling
with side information. arXiv preprint
arXiv:1308.4211, 2013.

[FU] Anqi Fu and Madeleine Udell. Cen-
sus labor law violations. https:

//github.com/h2oai/h2o-3/blob/

master/h2o-r/demos/rdemo.census.

labor.violations.large.R. Accessed:
2019-01-13.

[GAGG13] S. Gunasekar, A. Acharya, N. Gaur, and
J. Ghosh. Noisy matrix completion us-
ing alternating minimization. In Ma-
chine Learning and Knowledge Discovery in
Databases, pages 194–209. Springer, 2013.

[GLM16] Rong Ge, Jason D Lee, and Tengyu Ma.
Matrix completion has no spurious local
minimum. In Advances in Neural Informa-
tion Processing Systems, pages 2973–2981,
2016.

[GS17] Nicolas Gillis and Yaroslav Shitov. Low-
rank matrix approximation in the infinity
norm. arXiv preprint arXiv:1706.00078,
2017.

[HL12] Fang Han and Han Liu. Semiparametric
principal component analysis. In Advances
in Neural Information Processing Systems,
pages 171–179, 2012.

[Hot33] H. Hotelling. Analysis of a complex of
statistical variables into principal compo-

nents. Journal of Educational Psychology,
24(6):417, 1933.

[Jag13] Martin Jaggi. Revisiting Frank-Wolfe:
Projection-free sparse convex optimization.
In International Conference on Machine
Learning, pages 427–435, 2013.

[JBAS10] Michel Journée, Francis Bach, P-A Absil,
and Rodolphe Sepulchre. Low-rank opti-
mization on the cone of positive semidefi-
nite matrices. SIAM Journal on Optimiza-
tion, 20(5):2327–2351, 2010.

[JL84] William B Johnson and Joram Linden-
strauss. Extensions of Lipschitz mappings
into a Hilbert space. Contemporary mathe-
matics, 26(189-206):1, 1984.

[KMO10] R. H. Keshavan, A. Montanari, and S. Oh.
Matrix completion from a few entries.
IEEE Transactions on Information Theory,
56(6):2980–2998, 2010.

[KMU18] Nathan Kallus, Xiaojie Mao, and
Madeleine Udell. Causal inference with
noisy and missing covariates via matrix
factorization. In Advances in Neural
Information Processing Systems, 2018.

[KU16] N. Kallus and M. Udell. Revealed prefer-
ence at scale: Learning personalized pref-
erences from assortment choices. In The
2016 ACM Conference on Economics and
Computation, New York, NY, USA, 2016.
ACM.

[MGC11] Shiqian Ma, Donald Goldfarb, and Lifeng
Chen. Fixed point and bregman itera-
tive methods for matrix rank minimization.
Mathematical Programming, 128(1-2):321–
353, 2011.

[MHT10] Rahul Mazumder, Trevor Hastie, and
Robert Tibshirani. Spectral regularization
algorithms for learning large incomplete
matrices. Journal of machine learning re-
search, 11(Aug):2287–2322, 2010.

[MWCC17] Cong Ma, Kaizheng Wang, Yuejie Chi,
and Yuxin Chen. Implicit regularization
in nonconvex statistical estimation: Gradi-
ent descent converges linearly for phase re-
trieval, matrix completion and blind decon-
volution. arXiv preprint arXiv:1711.10467,
2017.

[NW11] S. Negahban and M. Wainwright. Estima-
tion of (near) low-rank matrices with noise
and high-dimensional scaling. The Annals
of Statistics, 39(2):1069–1097, 2011.

[PU17] Mihir Paradkar and Madeleine Udell.
Graph-regularized generalized low rank

7

https://github.com/h2oai/h2o-3/blob/master/h2o-r/demos/rdemo.census.labor.violations.large.R
https://github.com/h2oai/h2o-3/blob/master/h2o-r/demos/rdemo.census.labor.violations.large.R
https://github.com/h2oai/h2o-3/blob/master/h2o-r/demos/rdemo.census.labor.violations.large.R
https://github.com/h2oai/h2o-3/blob/master/h2o-r/demos/rdemo.census.labor.violations.large.R

models. In CVPR Workshop on Tensor
Methods in Computer Vision, 2017.

[RGC+08] Irina Rish, Genady Grabarnik, Guillermo
Cecchi, Francisco Pereira, and Geoffrey J
Gordon. Closed-form supervised dimen-
sionality reduction with generalized linear
models. In Proceedings of the 25th inter-
national conference on Machine learning,
pages 832–839. ACM, 2008.

[RWJ+18] Geneviève Robin, Hoi-To Wai, Julie Josse,
Olga Klopp, and Éric Moulines. Low-
rank interaction with sparse additive effects
model for large data frames. In Advances
in Neural Information Processing Systems,
pages 5501–5511, 2018.

[SLW+16] A. Schuler, V. Liu, J. Wan, A. Callahan,
M. Udell, D. Stark, and N. Shah. Discov-
ering patient phenotypes using generalized
low rank models. Pacific Symposium on
Biocomputing (PSB), 2016.

[SRJ04] N. Srebro, J. Rennie, and T. Jaakkola.
Maximum-margin matrix factorization. In
Advances in Neural Information Process-
ing Systems, volume 17, pages 1329–1336,
2004.

[SSS+16] Tobias Schnabel, Adith Swaminathan,
Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. Recommendations as
treatments: Debiasing learning and eval-
uation. arXiv preprint arXiv:1602.05352,
2016.

[UHZB16] M. Udell, C. Horn, R. Zadeh, and S. Boyd.
Generalized low rank models. Foundations
and Trends in Machine Learning, 9(1),
2016.

[UT18] Madeleine Udell and Alex Townsend. Why
are big data matrices approximately low
rank? SIAM Mathematics of Data Science
(SIMODS), to appear, 2018.

[WW18] Irène Waldspurger and Alden Waters. Rank
optimality for the Burer-Monteiro factor-
ization. arXiv preprint arXiv:1812.03046,
2018.

[YAKU18] Chengrun Yang, Yuji Akimoto, Dae Won
Kim, and Madeleine Udell. OBOE: Col-
laborative filtering for automl initialization.
In NIPS Workshop on Automated Machine
Learning, 2018.

[YUTC17] A. Yurtsever, M. Udell, J. A. Tropp, and
V. Cevher. Sketchy decisions: Convex
low-rank matrix optimization with optimal
storage. In International Conference on
Artificial Intelligence and Statistics (AIS-
TATS), 2017.

8

	Introduction
	Model
	Applications
	Why Low Rank?
	Fitting Low Rank Models
	PCA
	Missing Entries

	Loss Functions
	Conclusion

