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Abstract

This paper addresses a major challenge in the residential solar industry: automated
design of cost-effective, efficient rooftop photovoltaic (PV) installations. Optimal de-
signs choose system components, locations, and wiring to minimize cost while meet-
ing desired energy output and complying with all physical and legal constraints. We
present a novel lower bound for the energy produced by a PV installation, which ad-
mits efficient optimization via integer linear programming. The resulting algorithm
can design systems with a variety of solar hardware, including microinverters, string
inverters, and DC optimizers, and optimize for complex shading patterns. Prior to our
work, solar installers designed PV installations by hand. Our algorithm automates PV
design using OR techniques, and has been used to design over 10,000 installations.

We compare the performance of our optimal designs to designs produced by so-
lar installation experts at the National Renewable Energy Laboratory (NREL). Our
algorithm designs faster, cheaper, more energy efficient installations than expert in-
stallers, producing designs in tens of seconds where experts require tens of minutes.
The optimized designs deliver the required energy output at lower cost in more than
70% of cases, and on average increase the energy produced per dollar invested. These
results indicate that US rooftop solar PV installations could produce more than 2%
more energy at the same installation cost, or 820 GWh more energy per year.

1 Introduction

Distributed production of solar power using photovoltaic (PV) arrays is one compelling op-
tion for long term sustainable energy. For many households, the amount of energy incident
on their roof each year is more than sufficient to power the household’s energy needs Gagnon
et al. (2016). Distributed production using rooftop PV arrays reduces the losses associ-
ated with power transmission, provides increased energy security to households, and allows
households to supplement their income by selling energy back to the grid.

This paper addresses a major challenge in the residential solar industry: automated
design of cost-effective, efficient rooftop PV installations. Consider the designs shown in
Figure 1. Here the colors shown represent annual solar irradiance: brighter areas (yellows)
correspond to higher levels of insolation (ground-level solar radiation), while darker areas
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(reds to purples) correspond to lower levels. Black rectangles with white squares denote
solar panels, and other black shapes show obstructions, which are generally surrounded by
a shaded (often purple) area. Panels joined on the same string are connected by a red line,
and are connected to a PV inverter by a green line.

(a) Optimized design for sample site in Den-
ver, CO. The cost per kWh is 0.95. DC op-
timizers are chosen to handle the complex
shading. Three nice looking arrays maximize
available roof area.

(b) User design for sample site in Denver,
CO. The cost per kWh is 1.01. This de-
sign is infeasible because some panels overlap
ridges. There is also an islanded panel.

Figure 1: Two photovoltaic array designs for sample site in Denver, CO.

We can see that the design produced by an expert installer at the National Renewable
Energy Laboratory (NREL) (Figure 1b) has some modules that are not adjacent to any other
(resulting in a higher installation cost), and which do not lie entirely on a single roof face
(which is not physically allowed). In contrast, the optimal design produced by our algorithm
(Figure 1a) supplies the equivalent energy at lower cost and satisfies all constraints.

The PV design problem presents six essential challenges.

1. What kinds of panels and inverters should be used?

2. How many of each component are needed?

3. Where should they be placed?

4. How should they be wired together?

5. How can we estimate (and maximize) the energy produced?

6. How can we estimate (and optimize) the cost of the installation?

This problem is (provably) NP-hard. Yet previously, solar installers had no alternative than
to solve these problems by hand, resulting in inefficient designs. To increase the number of
photovoltaic installations in the US, while increasing quality and lowering cost, an automated
approach to design is critical:
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• Human designs take time. As the solar industry has matured, hardware costs of solar
installations have dropped. By 2012, non-hardware “soft costs”, including permitting,
financing, and customer acquisition, comprised 64% of the total installation cost for
residential solar systems Friedman et al. (2013). Automated system design allows solar
installers to quickly assess the economic viability of a potential installation and present
a plan to customers, which reduces the soft cost of an installation.

• Human designs violate constraints. Many designs created even by experts violate the
laws of physics or of man and result in dangerous, nonsensical, or illegal PV systems.
For example, our solar installation experts designed systems with inverters too small
to cope with the power or current produced by the panels; and placed panels too close
to eaves or ridges or chimneys, in violation of fire codes.

• Humans designs can be improved. Solar installation experts often fail to consider
important but challenging aspects of these PV design problems. For example, they
use expensive parts where cheap parts could produce just as much energy; and use
heuristics instead of considering the details of the problem, placing panels on a south
roof face (to maximize total irradiance) when a western facing array (producing power
in peak hours) would be more profitable.

1.1 Contributions

We approach the PV design problem using the fundamental tools of operations research:
mathematical modeling, simulation, and optimization.

• We mathematically model the PV design problem for residential solar arrays, and
developed a tractable LP-representable approximate formulation.

• We design a fast optimization algorithm, the AutoDesigner, to solve the PV design
problem. The AutoDesigner approximates the PV design problem by one that can be
globally solved by modern mixed integer linear programming (MILP) solvers, and then
refines the approximation to converge to a satisfactory solution.

• We use a detailed simulation of the energy produced by the array to check and refine
the linear model, ensuring that the approximation converges to a satisfactory solution.

1.2 Impact

The AutoDesigner algorithm has been implemented by a major solar software provider,
Aurora Solar, and is available to all of their customers as a product called the AutoDesigner.
It has been used by solar installers to design more than 10,000 installations, saving time,
money, and energy. Whereas human experts require about an hour to create a design, the
AutoDesigner takes less than a minute.

A third-party comparison of our method with the designs produced by human experts
found that the AutoDesigner outperforms hand-tuned designs for more than 70% of test
cases, and on average increases the energy produced per dollar invested (Freeman and Simon
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2015). Compared to designs produced by human experts, our automated designs are more
cost efficient, can be computed more quickly, and consistently respect physical and legal
constraints. These results indicate that US rooftop solar PV installations could produce
more than 2% more energy at the same installation cost, or 820 GWh more energy per year.

1.3 Related work

While the literature on PV system optimization is large, the AutoDesigner is, to our knowl-
edge, the first automated design tool for rooftop PV arrays.

Rekioua and Matagne (2012) detail techniques used for optimization of solar PV systems,
and provide a foundation for our approach.

A major focus of our paper is on designing arrays that function well under conditions of
variable shading. Massalha and Appelbaum (2016) consider the effect of variable shading of
modules inside solar panels arranged in rows. Nguyen and Lehman (2008) propose a real-time
control algorithm to reconfigure PV arrays in order to reduce the effect of variable shading;
Patnaik et al. (2011) propose a similar strategy for individual solar panels. In contrast to
those proposals, which use a specialized switching circuit, our designs use only standard
hardware that is common in modern rooftop PV installations. A substantial literature is
devoted to the design of efficient maximum power point trackers (MPPTs); see Esram and
Chapman (2007) for a review. Here, we assume that each inverter is equipped with an
MPPT, and do not consider the problem of MPPT design.

Our approach makes heavy use of modern optimization techniques, including the ap-
proximation of complex non-linear objective by a piecewise linear objective, mixed integer
linear programming, bisection search for black-box optimization, and model reduction via
clustering. For the reader unfamiliar with these techniques, we recommend the discussion of
bisection methods for quasiconvex optimization in Boyd and Vandenberghe (2004), and the
introduction to linear optimization techniques in Bertsimas and Tsitsiklis (1997).

Below, we provide definitions of the important hardware components of modern rooftop
PV installations. We recommend Parida et al. (2011) for a more thorough treatment.

2 PV arrays

In this section we describe the characteristics of PV arrays and how design choices affect
the energy and cost of these arrays. Much of this material is standard; see Rekioua and
Matagne (2012) for an introductory treatment. The electronic components encompassed by
our model include solar panels, string inverters, microinverters, and DC optimizers.

We leave to future work the problem of finding optimal solar arrays featuring batteries,
bypass diodes, and other more advanced electronics, as they are less commonly used in
practice and lead to very different modeling challenges from the ones we focus on here.
Our choice to model only solar panels, string inverters, microinverters, and DC optimizers
ensures that each I-V curve has a unique optimum, but makes the design problem harder,
since advanced electronics can reduce the impact of shading on solar array performance.
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2.1 PV panels

Solar panels are the building blocks for solar arrays. For a given irradiance and temperature,
a solar panel can operate at a range of currents and voltages. This range is best visualized
with an I-V curve as shown in Figure 2a (De Soto et al. 2006). The panel can operate at any
point (I, V ) on the curve; at any point, the energy produced is the product of the current I
and the voltage V .

There are four notable points on each I-V curve. The short circuit current Isc is the
current through the panel when the voltage is zero. The open circuit voltage Voc is the
voltage across the panel when the current is zero. The current Imp and voltage Vmp give the
maximum power point of the panel, the current and voltage at which the panel produces the
most power. A useful approximation to the behavior of PV panels states that as irradiance
increases, so does Isc; and as temperature increases, Voc decreases (but only slightly) (De Soto
et al. 2006). When a string of panels is connected in series, the voltage across the string
increases with the number of panels. When strings of panels are connected in parallel, the
current at the output increases with the number of strings. The orientation of a panel relative
to the sun determines the effective irradiance on the panel. To produce maximum power,
the normal to the plane of the panel should point directly at the sun.
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(b) Current vs voltage (I-V) curves for a shaded
(upper curve) and unshaded (lower curve) panel.
Shaded areas represent the maximum energy pro-
duced (upper plot) and lower bound on the energy
produced (lower plot).

Figure 2: Current vs voltage (I-V) curves and bounds on energy produced.

2.2 PV inverters

The simplest PV array consists of a collection of solar panels connected to inverters that
convert the DC energy produced by a solar panel into AC energy that can be consumed
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locally or by the electric grid. The energy produced by an array is determined by the
irradiance incident on the panels, the panel efficiency, and the efficiency of the inverters.

Three different inverter configurations are conventionally used to wire together inverters
with solar panels, which have remarkably different efficiency characteristics.

Microinverters. Microinverter configurations use a separate inverter for each solar panel
to convert the power from each panel individually. The power lost in this conversion is
generally less than 2%. However, the cost of purchasing a separate inverter for each panel is
often prohibitive.

String inverters. String inverter configurations use a single inverter to convert the power
from an array of panels. The simplest array consists of panels wired together in series. More
complex arrays connect multiple strings to the same inverter. To understand how this affects
efficiency, it is important to understand how inverters control their inputs.

Each inverter contains one (or more) power electronic devices called maximum power
point trackers (MPPT) that can adjust the current flowing through them. The MPPT
is wired in series with one (or more) strings of panels so the current through each panel is
controlled by the current through the MPPT. The voltage across each panel is determined by
the incident irradiance and the current through the panel according to the characteristic I-V
curve for that panel. The DC power produced by the panel is the product of the current and
voltage across the panel. The MPPT adjusts the current in order to produce the maximum
instantaneous power possible for the array given the irradiance on each panel.

Figure 2b illustrates this relation. It shows the current vs voltage (I-V) curve for two
panels, one unshaded (the upper curve) and one shaded (the lower curve). The power
produced by a single panel is the product of a current and voltage pair lying on that panel’s
I-V curve. The MPPT finds the current (red dot) that maximizes the power in the string,
which is given by the product of the current and voltage chosen, represented as the shaded
area on the plot. The upper plot shows the current voltage pair producing the maximal
power for each panel independently. The lower plot shows that the optimal current for the
shaded panel is feasible for the unshaded panel, and produces at least as much power in the
unshaded panel as in the shaded one. This observation gives rise to an approximation to the
true maximum power produced by a string of panels: the power produced is always greater
than the minimum power in any panel, times the number of panels. We make use of this
approximation below.

DC optimizers. DC optimizer configurations use power electronics mounted on each panel
to maximize the energy produced by each string by separately controlling the voltage on
each panel. The power electronics used on each panel are cheaper than microinverters while
producing similar efficiencies even on heavily shaded roofs, making them an attractive option.
These units began to appear in residential installations around 2009 (Grana and Shiao 2014),
but are still quite expensive compared to traditional string inverter configurations. By
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2013, DC optimizer configurations represented only 2.5% of total installed rooftop PV arrays
(Grana and Shiao 2014).

3 Problem statement

In this section, we will define the components of the problem our algorithm solves to produce
a PV design. In brief, the PV design problem is to find a valid PV array design meeting a
certain desired energy and minimizing the cost of the array. A valid design obeys a variety
of constraints on the panel locations and on the wiring of the panels to the inverters. We
describe our model for these constraints, for the energy produced by a design, and for the
cost of a design in the remainder of this section, and defer a formal problem description for
now.

Other forms of the optimization problem may also be interesting. For example, one
might want to maximize energy while controlling cost. It is easy to solve the maximum
energy problem using just a logarithmic (in the inverse error tolerance) number of calls to a
black-box solver for the minimum cost problem (Aravkin et al. 2016).

In this paper we will concentrate on the minimum cost problem formulation for simplicity.

3.1 Location constraints

Solar panels generally should not overlap, and are usually placed together in regular arrays.
Panels may only be placed in certain areas of roofs to obey fire codes and other zoning
constraints. Usually, these restrictions prevent panels from being placed too close to a roof
edge or to an obstruction such as a chimney. In this paper, we restrict panels to be placed
parallel to the roof face, and leave to future work the complications of panels with compound
tilt.

3.2 Inverter constraints

Each inverter has a safe operating range of currents I, voltages V and powers P given by
constraint sets

(I, V, P ) ∈ Ci. (1)

Inverter manufacturers specify the constraint sets Ci by defining maximum and minimum
values for the current, voltage and power, so that the sets Ci may be specified in the form of
affine inequality constraints on I, V , and P .

To ensure safety of the PV system, a design should never connect more panels and strings
to an inverter than it can safely handle even at maximal irradiance. Hence these constraints
restrict the number of panels and strings that can be served by a single inverter.
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3.3 Energy output

The power produced by a PV array can be calculated by computing the maximum power
point for each MPPT in the array given the irradiances on the panels, and summing the
powers produced in each panel at that current and irradiance. This function is difficult
to compute, since finding the MPPT requires solving a partial differential equation (PDE)
(Rekioua and Matagne 2012). We do not address the problem of computing the MPPT in
this paper. Instead, our algorithm relies on another method to compute the power produced
by a given PV array. Our method requires access to these values but not to gradients
of the value, which allows us to use any reliable PDE solver in our optimization routine.
In numerical results below, we use an simulator developed at Aurora Solar to solve this
PDE. This simulator has been independently evaluated by the National Renewable Energy
Laboratory (NREL) and found to perform within 6% (or ≤ 2% if we discard one outlier test
site) of the true values on standard installations (Freeman and Simon 2015).

3.4 Cost

In this paper we approximate the cost of a PV array as the sum of the costs of the inverters,
panels, and DC optimizers chosen. Other forms for the cost objective are worth considering:
for example, inverters last around 10 years, while solar panels can last up to 30 years with
today’s technology. So tripling the cost of the inverters might provide a more accurate
estimate of the lifetime capital cost of the installation. This change increases the incentive
to find designs that save money on inverters, which is often achieved by selecting string
inverters in place of microinverters.

We neglect installation cost (including labor) and the cost of wires and other system
components, which usually form a very small part of the cost of residential solar installations.
Modeling and optimizing designs for these costs is an interesting challenge we defer to future
work.

4 Algorithm

The algorithm presented here addresses each of the five difficulties.

1. Enumerate the panels and inverters that can be used in conjunction; encode each as
an indicator variable.

2. Encode capacity constraints on each system component as a linear constraint to deter-
mine how many are needed.

3. Use an indicator variable that matches each solar panel to a string on some roof face
to encode wiring decisions.

4. Estimate the energy produced by a particular wiring configuration using a simple linear
lower bound.
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5. Estimate the cost of the installation as an affine function of the indicator variables
corresponding to the panels and inverters chosen.

That is, using a linear lower bound on the energy produced by a design described below,
the PV design problem can be encoded as a MILP that computes a feasible design with
energy at least as great as the input desired energy. This design MILP is described below.
To refine the design when the true energy produced is excessive, we use a bisection method
presented as Algorithm 1.

Algorithm 1 Bisection algorithm for PV array optimization

input: problem data, convergence tolerance ε
Choose potential panels and inverters.
Set Ēdes ← Edes, Ēhigh ← Edes, Ēlow ← 0.
repeat

Solve design MILP (5) to determine assignment of panels to faces, string lengths to
faces, string lengths to inverters, and wiring of panels to strings.
Simulate design to determine true energy output Ê of design.
if Ê ≥ Edes then
Ēhigh ← Ēdes

else
Ēlow ← Ēdes

end if
Ēdes ← 1

2
(Ēlow + Ēhigh)

until Ēhigh − Ēlow < ε
Refine design with local search.
output: strings of panels, inverter wiring

In the remainder of this section we describe each of the steps in Algorithm 1 in turn.
The design MILP (5) always underestimates the energy that will be produced by a

given stringing of those panels, so Ēhigh and Ēlow always produce designs with true output
energy bracketing Edes. By adjusting the desired aggregate output of the panels used in the
assignment MILP, this algorithm converges to a design with energy close to Edes.

The design space of the problem is discrete, so we cannot expect to achieve a design
producing energy exactly Edes. Instead, when Ēhigh and Ēlow are sufficiently close, all input
energies to the MILP in between these two values will produce the same design as either Ēhigh

or Ēlow. For example, if the set of panels P low are used in the design that produces energy
Ēlow and panel p is the next best panel, then we often eventually find that the following
equality holds:

Ēlow + ep = Ēhigh,

where ep is the annual energy produced by the next best panel p. Hence no energy between
Ēlow and Ēhigh can be achieved without perturbing the locations of the panels. Alternatively,
we could move panels into different (suboptimal) locations to hit Edes exactly, but that would
lower the efficiency (in $/kWh) of the design.
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Notation. To avoid confusion, we use a consistent notation for indexing panels, inverters,
roof faces, strings, and time. Panels are indexed by p ∈ P , inverters are indexed by i ∈ I,
roof faces are indexed by f ∈ F , strings are indexed by s ∈ S, and time is indexed by t ∈ T .
Feasible string lengths for inverter i ∈ I are indexed by l ∈ Li. The feasible string lengths
will generally be a range of integers of the form Li = {mi, . . . ,Mi} where mi ∈ Z and Mi ∈ Z
are determined by the minimum and maximum allowable voltage for inverter i. The set of
all allowable string lengths in the installation L satisfies

L = ∪i∈ILi.

The set of panels on face f is denoted by Pf ; the sets Pf form a partition of P .
We will use these indices to differentiate among variables and parameters corresponding

to different system components. For example, ept will be the energy of panel p at time t,
while est will be the energy of string s at time t.

4.1 Potential panels and inverters

We assume that a set of panel and inverter types is given as input to the algorithm.

Potential panels. The design MILP requires as input a set of potential panels p ∈ P .
A potential panel p is a panel of a specified type at a specified location on a roof. The
complexity of the design MILP increases with the number of potential panels |P|, but the
MILP will be infeasible (or produce a poor solution) if too few panels are allowed. Most
residential designs use a single panel type, and arrange panels on each roof face in a regular
array; other designs are generally considered ugly. Hence to produce a set of potential panels
P , our algorithm chooses a single type of panel and tiles each roof face so as to fit as many
panels as possible in a regular array. Examples are shown in Figure 3.

Potential inverters. A potential inverter is an instance of an inverter of a specified type.
The set of potential inverters I is chosen to contain as many replicas of each inverter type as
may be necessary to service the PV array. The complexity of the design MILP increases with
the number of inverters |I|, but the MILP will be infeasible (or produce a poor solution) if
too few inverters are allowed.

We pick inverters to use by solving a very simple optimization problem. For each type
of inverter i, let the variable ni be the number of inverters of type i, and recall that mi is
the minimum length of a string connected to an inverter of type i. Let np be a lower bound
on the number of panels needed to meet the desired energy constraint Ēdes. We can find a
set of inverters needed to service np panels by solving the following optimization problem:

minimize
∑

i∈I cini (cost)
subject to np ≤

∑
i∈I nimi (capacity)

(2)

with variables ni ∈ Z.
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Figure 3: Each roof face is tiled to find feasible panel locations.

Potential strings. Similarly, to solve the design MILP we must first choose a set of
potential strings S. Each potential string s ∈ S is described by its length ls. Just as with
the panels and inverters, the complexity of the MILP increases with the number of strings
|S|, but the MILP is infeasible if too few are chosen. Using too many strings can present
a substantial challenge to MILP solvers. Let us postpone the question of how to choose
potential strings S; we will soon see an alternative formulation of the design problem that
does not require enumeration of S.

4.2 Design MILP

We are now ready to describe the MILP formulation of the PV design problem.

Problem data. The problem data for the design MILP consists of the following:

• costs of panels cp for p ∈ P

• costs of inverters ci for i ∈ I

• annual energy of panels ep for p ∈ P

• hourly energy of panels ept for p ∈ P , t ∈ T (usually T ranges over every hour in a
year)

• desired system energy Ēdes
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• constraints on inverter power, current, and voltage Ci for i ∈ I

• maximum number of strings that can be wired to each inverter Ni for i ∈ I

• string lengths ls for s ∈ S

We treat microinverter, string inverter, and DC optimizer configurations using the same
framework; the difference between these configurations is simply encoded in the inverter
constraints Ci. For example, a microinverter configuration will have Ni = 1 for every i ∈ I
and will constrain the voltage, power, and current wired to the inverter so that only one
panel can be wired to a single inverter. We will assume in the exposition below that each
inverter has only one MPPT. The case of multiple MPPTs adds only notational complexity.

Variables. We introduce integer variables to denote which components are used and how
they are wired together:

• zp ∈ {0, 1} for p ∈ P is 1 if panel p is used

• zi ∈ {0, 1} for i ∈ I is 1 if inverter i is used

• zs ∈ {0, 1} for s ∈ S is 1 if string s is used

• zsp ∈ {0, 1} for s ∈ S, p ∈ P is 1 if panel p is assigned to string s

• zli ∈ {0, 1} for i ∈ I, l ∈ Li is 1 if any string of length l is wired to inverter i

• nli ∈ Z for i ∈ I, l ∈ Li denotes the number of strings of length l wired to inverter i

• nlf ∈ Z for f ∈ F , l ∈ L denotes the number of strings of length l on face f

We introduce continuous variables to denote the energy produced by the components:

• est ∈ R for s ∈ S, t ∈ T denotes the energy produced by string s at time t

Capacity constraint. To ensure that these variables have the correct interpretations, we
say the capacity constraint

(zp, zi, zs, zli, zsp, nli, nlf ) ∈ Ccap

holds if∑
s∈S zs =

∑
f∈F nlf , l ∈ L (every string is on some face)∑

s∈S zs =
∑

i∈I nli, l ∈ L (every string is wired to some inverter)∑
p∈P zp =

∑
s∈S lszs, (every panel is on some string)∑

s∈S zsp = zp, p ∈ P (no panel is on more than one string)∑
p∈P zsp = lszs, s ∈ S (strings have correct lengths)∑
l∈Li

nli ≤ Nizi, i ∈ I (strings fit on inverters)∑
l∈Li

zli ≤ 1, i ∈ I (inverters have a single MPPT)
nli ≤ Nizli, i ∈ I, l ∈ Li (indicator true if number is positive).

(3)
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Note that the capacity constraint is representable as an affine inequality constraint in the
problem variables.

Inverter constraint. The maximum current, voltage, and power across an inverter are
linear in the problem variables, with constants of proportionality that depend on the char-
acteristics of the type of panel chosen.

• Current is proportional to
∑

l∈Li
nli, the number of strings wired to the inverter.

• Voltage is proportional to maxl∈Li
lzli, the maximum length of any string.

• Power is proportional to
∑

l∈Li
lnli, the total number of panels wired to the inverter.

For ease of notation, we assume that the constants of proportionality have been incorporated
into the constraint sets Ci from (1), so(∑

l∈Li

nli, max
l∈Li

lzli,
∑
l∈Li

lnli

)
∈ Ci

if and only if the configuration is within the safe operating range for inverter i.

Energy. We use a simple approximation to the energy output of an array based on the
irradiance and wiring to encourage similarly shaded panels to be strung together into strings.
Letting Ps denote the set of panels in string s, and ept the energy of panel p and time t, the
approximation to the energy est produced by string s at time t is

est = |Ps|min
p∈Ps

ept.

This approximation is an underestimate of the true energy. The MPPT will choose a current
through the string which is feasible (less than the maximum current allowable for any panel in
the string), and which causes the string to produce the greatest energy possible. The current
which produces the maximal power in the panel with the least irradiance is always feasible
for the other panels. It produces power minp∈Ps ept in the panel with the least irradiance, and
produces at least that much power in every other panel in the string. Figure 2b demonstrates
this approximation graphically.

This approximation has the advantage that it can be represented with linear constraints.
If for some M ∈ R,

est ≤ eptls +M(1− zsp), s ∈ S, t ∈ T , p ∈ P , (4)

then est is a lower bound on the energy produced in string s at time t.

• If zsp = 1, then est ≤ eptls.

• If zsp = 0, then est ≤ eptls +M .
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If M is large enough, then est is not constrained by ept for panels p not chosen to be in string
s. Choosing

M ≥
(

max
l∈L

l

)(
max

p∈P,t∈T
ept

)
is sufficient.

This linear approximation is exact when, at each time t, every panel in a given string has
exactly the same energy. In fact, this happens surprisingly often, since at any time of day,
the energies of all the panels on a given roof face can be well approximated by one of two
values: ept ≈ αt or ept ≈ βt} for every p ∈ P . This simplification is due to the binary impact
of shading: panels either produce a high energy (when in direct sunlight) or a low energy
(using diffuse light from the blue sky). Using this linear approximation in the optimization
problem induces a clustering of panels into strings that groups panels by the energy they
produce, and hence, one that frequently segregates shaded panels from unshaded panels,
making the approximation exact at the solution for many times t.

Design MILP. We’re ready to put together all of the parts into the design MILP. Our
problem is

minimize
∑

i∈I cizi +
∑

p∈P cpzp (cost)

subject to Edes ≤
∑

s∈S
∑

t∈T est (energy)
est ≤ eptls +M(1− zsp) s ∈ S, t ∈ T , p ∈ P (linear approximation (4))
est ≤Mzs s ∈ S (no energy from unused string)
(
∑

l∈Li
zli,maxl∈Li

lzli,
∑

l∈Li
lnli) ∈ Ci i ∈ I (inverters (1))

(zp, zi, zs, zli, zsp, nli, nlf ) ∈ Ccap (capacity (3))
(5)

with variables zp ∈ {0, 1}, zi ∈ {0, 1}, zs ∈ {0, 1}, zli ∈ {0, 1}, zsp ∈ {0, 1}, nli ∈ Z, and
nlf ∈ Z, for p ∈ P , i ∈ I, f ∈ F , s ∈ S, and l ∈ L.

The solution to the design MILP gives the minimum cost set of panels zp and inverters
zi together with an assignment of panels to strings zsp and of strings to faces nlf with the
properties that

1. the panels can be wired safely to inverters; and

2. the linear approximation to the energy produced by the strings of panels exceeds the
desired energy Ēdes.

The design MILP is a mixed integer linear program that can be solved by any standard
solver; the experiments in this paper all use the Gurobi solver (Optimization 2012).

4.3 Refinement

The solution of the design MILP gives us an assignment of panels to strings in the form
of zsp. Before the design is complete, we must find an ordering of panels on strings such
that they can be installed quickly and cheaply. In general, panels that are located far apart
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cost more to connect because extra wire is needed, and additional time is needed for the
installation. We would like to find an ordering of panels that minimizes the amount of wire
necessary to connect them.

We solve this problem by reducing it to a (very small) traveling salesman problem. Define
a graph in which each panel in a string is a node. Let dij be the distance between panel pi
and pj, which might depend on the physical distance between the panels, or on the cost of
wiring the two panels together. Define variable cij ∈ {0, 1} for each pair of panels i and j so
cij = cji = 1 if pi is connected to pj in the string and 0 otherwise. We search for a solution c
that connects every p ∈ s in a single tour in order to minimize the total distance of the tour,

(1/2)
∑
i∈s

∑
j∈s

dijcij.

In residential solar designs, there are generally no more than a dozen or so panels in a
string, so a reasonable solution to this traveling salesman problem can be found quickly with
standard methods.

The solution c will connect the panels in a loop. There are many ways to transform this
into a string with distinct start and endpoints. We might remove the edge with the longest
distance dij, or the edge between two panels closest to the inverter to which string s is wired.

5 Improving performance

The design MILP (5) produces a design that satisfies the requirements of the PV design
problem. A particularly nice property of the design MILP is that the energy produced by
the design always exceeds the input desired energy Ēdes. However, the size of the problem
is too large to solve in a reasonable time for all but the most simple problems. In this
section we describe a few approximations that reduce the time needed to produce a good
solution to the PV design problem to less than a minute.

5.1 Assignment and wiring

One important change to the design MILP which reduces computation time is to split it
into two separate optimization problems which we call the assignment MILP and the wiring
MILP. The assignment MILP is independent of the stringing of the panels, while the wiring
MILP performs the stringing. We describe both below. Definitions for the problem data and
variables used in these problem descriptions were previously introduced above.

Capacity constraints. The capacity constraint for the assignment problem now takes
a different form: it enforces constraints on the string lengths, but no longer enforces any
constraints on the assignment of panels to strings (which we leave to the wiring MILP). To
ensure that the remaining variables have the correct interpretations, we say that the capacity
constraint for the assignment problem

(zp, zi, zli, nli, nlf ) ∈ Casg
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holds if ∑
p∈Pf

zp =
∑

l∈L lnlf , f ∈ F (every panel is on some face)∑
l∈Li

nli ≤ Nizi, i ∈ I (every string is wired to some inverter)∑
i∈I nli =

∑
f∈F nlf , l ∈ L (every string is on some face).

(6)

Note that the capacity constraint for the assignment problem is representable as an affine
inequality constraint in the problem variables.

Assignment MILP. The assignment MILP assigns panels to roof faces and to inverters,
respecting the capacity constraints by solving the problem

minimize
∑

i∈I cizi +
∑

p∈P cpzp (cost)

subject to
∑

p∈P epzp ≥ Edes (energy)

(
∑

l∈Li
zli,maxl∈Li

lzli,
∑

l∈Li
lnli) ∈ Ci i ∈ I (inverters (1))

(zp, zi, zli, nli, nlf ) ∈ Casg (capacity (6))

(7)

with variables zp ∈ {0, 1}, zi ∈ {0, 1}, zli ∈ {0, 1}, nli ∈ Z, and nlf ∈ Z for p ∈ P , i ∈ I,
f ∈ F , and l ∈ L. The solution to this problem gives the minimum cost set of panels and
inverters with the properties that

1. the panels can be assigned to faces and wired safely to inverters, and

2. the sum of the annual energies of the panels exceeds the desired energy Edes.

This problem has fewer variables than the design MILP 5, and can be solved much more
efficiently.

Wiring MILP. The assignment MILP assigns string lengths to roof faces, but does not
select which panels to wire together into strings. Its estimate of the energy produced by a
design with kf panels on each face f ∈ F is simply the sum of the top kf annual energies
of panels on face f . Since some energy is lost in the conversion from DC to AC power,
this overestimates the energy produced, particularly for string inverter configurations: when
a shaded panel is strung in series with an unshaded panel, the performance of the string
suffers significantly. The wiring MILP uses instead the linear approximation to the energy
of a string described above.

The solution to (7) determines the number of strings of each length on each face. Given
these strings s ∈ S each with length ls, we solve the following problem for each face to find
the best way to wire the panels together:

maximize
∑

s∈S
∑

t∈T est (energy)
subject to est ≤ eptls +M(1− zsp) s ∈ S, t ∈ T , p ∈ P (linear approximation (4))∑

p∈P zsp = ls s ∈ S (string length)∑
s∈S zsp ≤ 1 p ∈ P (one string per panel)

(8)
with variables zsp ∈ {0, 1} and est.
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5.2 Binary representation

We can exploit other properties of our problem data to achieve a more refined solution. As
we noted earlier, at any given time, panels on the same roof face either produce a high energy
(when in direct sunlight) or a low energy (using diffuse light from the blue sky). Hence the
energy of the panels on a particular roof face can be well approximated as

ept ≈ αt(1− wpt) + βtwpt,

where wpt ∈ {0, 1}, and αt (βt) is the average energy of an unshaded (shaded) panel at time
t. The binary constraints on the problem variables allows ILP solvers to restrict the search
space significantly, leading to faster convergence.

5.3 Clustering times

The complexity of Problem 8 grows significantly with |T |. To make the problem smaller, we
can cluster times to find a subset of times that still captures the shading information. The
clustering method described here builds on De Rubira and Toole (2015).

Recall that we defined et ∈ RNp to be the vector of panel energies at time t. Suppose
that we have a partition T1, . . . , Tk of the times T so that et is the same for every t ∈ Ti, for
each i = 1, . . . , k. Pick a set of index times t1 ∈ T1, . . . , tk ∈ Tk. Then Problem 8 reduces to

maximize
∑

s∈S
∑k

i=1 |Ti|esti (energy)
subject to esti ≤ eptils +M(1− zsp) s ∈ S, i = 1, . . . , k, p ∈ P (linear approximation (4))∑

p∈P zsp = ls s ∈ S (string length)∑
s∈S zsp ≤ 1 p ∈ P (one string per panel).

(9)
Problem 9 uses many fewer variables and constraints than Problem 8. Hence this clustered
problem formulation can typically be solved in less than a second, several orders of magnitude
faster than the original formulation.

For more general problems, we may still wish to cluster times so that et is approximately
equal for every time in the cluster. To achieve this, first pick the number of time clusters k.
This number will be chosen to ensure Problem 9 can be solved efficiently. We aim to find
sets T1, . . . , Tk that partition T , as well as representative times for each cluster ti ∈ Ti for
i = 1, . . . , k. To do this, we solve

minimize
∑k

i=1

∑
t∈Ti ‖et − eti‖,

subject to {Ti} partition the set T
ti ∈ Ti, i = 1, . . . , k

with variables Ti and ti.
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An alternative approach, which we employ in our numerical experiments, is to approxi-
mate the energy vectors et in a cluster by the cluster centroid bi. We solve

minimize
∑k

i=1

∑
t∈Ti ‖et − bi‖

subject to {Ti}ki=1 partition the set T
bi ∈ {0, 1}|P|, i = 1, . . . , k.

This problem is a standard k-means clustering problem. Note that the cluster centroid vector
of energies bi may never be (exactly) achieved at any time.

Shading patterns are periodic with only slight variations daily. Hence a good choice of
the number of clusters k can greatly reduce the problem size without introducing significant
errors.

If we use the binary representation introduced above, then instead of clustering energies
et ∈ R|P|, we can instead cluster the boolean vectors wt ∈ {0, 1}|P|. Given this clustering,
we solve Problem 9 with the objective (energy) replaced by

∑
s∈S

k∑
i=1

|Ti|esti .

Eliminate islands. Often times the design that produces the most energy is too expensive
to install, or aesthetically awkward. One common problem is that panels may be placed far
away from any other panels. We call these islanded panels. These islanded panels increase
the cost of the installation, since a separate rack (beams attached to the roof) must be
installed for each islanded panel. They also reduce the visual symmetry of the PV array,
and may be considered an eyesore.

To remove islanded modules from the design produced by the design MILP, we perform
a local search around the given design by iteratively moving islanded panels to available
locations with the most adjacent panels, so long as the move does not reduce the energy of
the installation unacceptably. Let nl be the number of adjacent panels to location l, and el
be the annual energy of a panel at location l. The desirability of location l is given by the
function

f(l) = nl + εel,

where ε < 1/maxl el trades off between our annoyance at including islanded modules and
our annoyance at reducing the energy of the installation. We iteratively select the filled
location l with the smallest value of f(l), and move that panel to the unfilled location l′ with
the largest value of f(l), until no unfilled location has a higher value of f than any filled
location.
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6 Numerical results

6.1 Convergence

In Figure 4 we show a typical convergence plot for the AutoDesigner, applied to the roof face
shown in Figure 5e, for a desired energy output (red line) of 11KWh/year. Each iteration
shown is an outer iteration of the bisection method obtained by solving the assignment MILP
and the wiring MILP with clustered times. In each figure, the green line shows the desired
energy Edes.

Panel 4a shows the (energy, time) pairs obtained as the algorithm converges to the desired
energy Edes.

Panel 4b shows the (energy, cost) pairs obtained as the algorithm progresses as dots
whose shading corresponds to algorithm progress: dark dots correspond to early iterations,
and lighter dots appear at later iterations. We see that the algorithm first finds (energy,
cost) points that bracket the desired energy; as the algorithm makes progress, it finds points
closer and closer to the desired energy. The cost of the final (lightest) iterate is minimal
among feasible points, i.e., points that lie to the right of the red line.

Panel 4c shows the relation between the simulated energy E of the design and the param-
eter Ēdes used in the outer bisection algorithm. We plot points (E, Ēdes) for each iteration
as dots whose shading corresponds to algorithm progress as above. The dashed line shows
the line y = x. We see that the algorithm first chooses Ēdes so that the simulated energy E
brackets the desired energy Edes, and then bisects to find the lowest Ēdes producing a design
with energy at least Edes. Deviations of iterates from the dashed line show that sometimes
large changes in Ēdes cause only small changes in the simulated energy E.
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Figure 4: Convergence of our algorithm for a typical roof.

6.2 Comparison to human-generated designs

The AutoDesigner was validated by NREL on residential test sites across the country. An
expert designer produced designs for a range of sample sites, and the AutoDesigner produced
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designs for the same sites. A few of the resulting designs are shown in Figure 5.
We considered the following three performance metrics:

• cost is the cost of panels, inverters, and DC optimizers used in the design ($),

• energy is the simulated annual energy produced by a design (kWh), and

• savings is the simulated annual bill savings from the design. ($/year).

A design can sometimes save money even while producing less energy by producing energy
at times of day when electricity is most expensive.

We say that one design is better than another if it has a higher value (energy to cost
ratio), or if it has a higher return on investment (ROI) (savings to cost ratio). In more than
73% of our tests, the optimizer was found to produce designs that performed better than
the designs produced by a PV expert with respect to either value or ROI.

To conduct this test, we selected 30 test sites located across the country. Staff at Aurora
Solar created models for the roofs and trees at these sites, and provided a 60 minute training
to a human designer, an NREL staff member with experience designing residential solar
arrays. The designer was given an annual energy target for each site (80% of estimated con-
sumption) and instructed to create the cheapest design possible. At the designer’s disposal
were 2 types of panels, 14 types of string inverters, 2 types of DC optimizers, and 2 types of
micro inverters. The designer spent 9 hours creating designs for the 30 sites, approximately
18-20 minutes per site. Independently, we ran the AutoDesigner for each site with the same
energy targets and components as inputs.

Designs created by human experts tend to fall within around 5% of the nominal energy
production for the installation (Figure 6a). Our algorithm produces designs with energy
production within 5% of the nominal values in less than two minutes for 92% of sites in our
study, and in less than 3 minutes for every site (Figure 6b).
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(a) Optimized design for sample site 1, in
Millbrae, CA. The cost per kWh is 0.72. The
strings in the left array reduce the impact of
shading caused by the chimney.

(b) User design for sample site 1, in Mill-
brae, CA. The cost per kWh is 0.89. This
design uses expensive DC optimizers and an
islanded panel.

(c) Optimized design for sample site 4, in
Portland, OR. The cost per kWh is 1.07.
The string lengths are chosen to utilize the
high irradiance, space constrained roof faces.

(d) User design for sample site 4, in Portland,
OR. The cost per kWh is 1.17. One large
roof face is used but some of the panels in
the lower left are shaded by the trees.

(e) Optimized design for sample site 5, in
Staten Island, NY. The cost per kWh is 1.08.
The panels and strings on the left roof face
are chosen to minimize the impacts of shad-
ing from the tree.

(f) User design for sample site 5, in Staten
Island, NY. The cost per kWh is 1.12. Two
large arrays are used but the stringing does
not account for the shading caused by the
trees or chimneys.

Figure 5: Optimized designs vs user designs.
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Figure 6: Relative errors in user and optimized designs.
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7 Discussion

We have presented an algorithm for approximately minimizing the cost of an PV installa-
tion that produces a certain desired energy, and we have demonstrated that the algorithm
produces excellent designs in practice. This algorithm produces a design that is optimal up
to the modeling approximations we have chosen. To produce a better design, with respect
to these metrics, would require either

• a more accurate model of cost of installation,

• a more accurate model of energy produced, or

• modeling a more rich set of potential hardware components.

For example, instead of forming a grid of potential panel locations at the start of the
algorithm, one might want to allow a continuum of panel locations. Of course, allowing more
panel locations increases the complexity of the algorithm.

Our approach to modeling hardware components was to enumerate each possible com-
ponent. A more powerful model might parametrize these components and choose from the
parameters; however, this addition is not particularly useful for most solar installers, who
must choose from pre-existing hardware components. Other hardware components give rise
to substantively different problems: for example, allowing a battery adds a control problem
(how to best operate the battery) to the design problem (how to size a battery to achieve
the best ROI).

Another natural and important extension of our work is to investigate robust formula-
tions of the problem to ensure the array continues to perform well in a variety of weather
conditions, despite measurement errors in problem parameters, and despite changing con-
ditions: for example, one might want a design that continues to perform well even as trees
around the roof grow taller and cast more shade. More consequentially, one might want
to choose a design to be robust to plausible regulatory changes that affect the price and
incentive structure for residential solar energy.

8 Conclusion

In this paper, we proposed an automatic solution for the design of rooftop solar photovoltaic
arrays. We showed that our algorithm, the AutoDesigner, was capable of producing designs
of quality comparable or better than those produced by a human expert in a small fraction
of the time: our experiments showed that the AutoDesigner outperforms hand-tuned designs
for more than 70% of test cases.

Technically, the approach of the AutoDesigner is to approximate the PV design problem
by one that can be globally solved by modern mixed integer linear programming (MILP)
solvers, and then to refine the approximation until the method converges to a satisfactory
solution. The AutoDesigner algorithm consists of three phases:
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1. a MILP formulation to find the optimal panel locations and array wiring,

2. a bisection refinement routine to tune the linear model, and

3. a local search routine to improve the results of the linear approximation.

We believe there is an opportunity for more sophisticated optimization techniques to fur-
ther improve the solution accuracy and solution speed, as well as to target a more detailed
model of the problem that includes the cost of wiring and installation. From a practical per-
spective, it is also important to find designs which are aesthetically appealing, as homeowners
are loathe to install ugly arrays.

From a broader perspective, this work presents a detailed case study of the application
of a variety of optimization techniques, including outer approximation of a PDE-constrained
objective by a linear objective, mixed integer linear programming, bisection search for black-
box optimization, and model reduction via clustering, to a complex and realistic problem
in engineering design. More generally, this work showcases the efficacy of OR techniques
to solve an important and complex problem in engineering design. We hope that this case
study can serve as a guide for other important applications in engineering design.

This work also has important implications for the development of the solar industry.
Automated design of rooftop solar has the potential to lower the “soft costs” of installation,
which comprise more than 64% of total installed cost. As such, we believe this problem
deserves attention by the research community, and this project takes an important first step
in that direction. This project has already had significant impact in practice. We hope this
project inspires further contributions from the OR community to secure our energy future
through efficient distributed solar energy.
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