PCA on a Data Frame

Madeleine Udell

Computational and Mathematical Engineering
Stanford, CA 94305

udell@stanford.edu

ABSTRACT

Principal components analysis (PCA) is a well-known tech-
nique for constructing a low rank model of a data matrix.
Here, we propose a new method which performs an analogue
of PCA on a data frame, i.e., an arbitrary data set consist-
ing of numerical, Boolean, categorical, ordinal, and other
data types. We illustrate our method by fitting a low rank
model to the 2013 American Community Survey (ACS), a
demographic survey covering 1% of the population of the
United States.

1. INTRODUCTION

In applications of machine learning and data mining, one fre-
quently encounters large collections of high dimensional data
organized into a data frame, an arbitrary data set consisting
of numerical, Boolean, categorical, ordinal, and other data
types. Each row in the data frame represents an example,
and each column a feature or attribute. These tables may
have columns of different (sometimes, non-numeric) types,
and often have many missing entries.

For example, in social science, the data frame might record
survey responses: each row of the table records survey re-
sults for a particular respondent, and each column corre-
sponds to a distinct survey question. The values in the table
might be numerical (income), Boolean (unemployed), ordi-
nal (level of education), or categorical (state of residence).
Tests not administered or questions left blank result in miss-
ing entries in the data set. Other examples abound: in fi-
nance, the table might record known characteristics of com-
panies or asset classes; in medical settings, it might record
test results and vital signs; in marketing, it might record
known customer characteristics and purchase history.
Exploratory data analysis can be difficult in this setting.
To better understand a complex data set, one would like to
be able to visualize the features and examples; to find clus-
ters of similar or correlated features or examples; to identify
archetypical or representative features or examples; to fill in
(impute) missing entries; and to remove (or identify) spuri-
ous or noisy data points. This paper introduces a method
designed to enable these analyses even on large data sets
with heterogeneous values and with many missing entries.
The method works by embedding both the rows (examples)
and columns (features) of the data frame into the same k
dimensional vector space, returning one short vector corre-
sponding to every example and to every feature.

Stephen Boyd
Information Systems Laboratory
Stanford, CA 94305

boyd@stanford.edu

When a data set consists only of numerical (real-valued)
data and has no missing entries, it is easy to find such an em-
bedding using Principal Components Analysis (PCA). PCA
finds a low rank matrix that minimizes the approximation
error, in the least-squares sense, to the original data set.
A factorization of this low rank matrix embeds the origi-
nal high dimensional features into a low dimensional space.
Here, we extend PCA to approximate an arbitrary data set
by replacing the least-squares error used in PCA with a loss
function that is appropriate for the given data type, and
adding regularization in order to correctly impute missing
entries. Moreover, we provide automatic rules for scaling
the loss functions in order to sensibly trade off errors of dif-
ferent types: say, approximating “California” by “Nevada”,
or “rarely” by “sometimes”. Minimizing the sum of the loss
function and regularization produces a low dimensional em-
bedding of the data set, as in PCA.

This low rank approximation problem is not convex, and in
general cannot be solved globally and efficiently. However,
the problem can be heuristically (locally) solved by alternat-
ing minimization and its variants: methods that alternate
between updating the two factors in the low rank approxi-
mation. Each step involves solving a convex problem, and
can be efficiently solved in parallel. While these alternating
methods need not find the globally best low rank approxima-
tion, they are often very useful and effective for the original
data analysis problem.

1.1 Previous work

Heterogeneous data. Many authors have proposed the
use of low rank models as a tool for integrating heteroge-
neous data. The earliest example of this approach is canon-
ical correlation analysis, developed by Hotelling [20] in 1936
to understand the relations between two sets of variates in
terms of the eigenvectors of their covariance matrix. In the
1970s, De Leeuw et al. proposed the use of low rank models
to fit data measured in nominal, ordinal and cardinal levels
[10]. More recently, Goldberg et al. [14] used a low rank
model to perform transduction (.e., multi-label learning) in
the presence of missing data by fitting a low rank model to
the features and the labels simultaneously. Low rank models
have also been used to embed image, text and video data
into a common low dimensional space [16], and have recently
come into vogue in the natural language processing commu-
nity as a means to embed words and documents into a low
dimensional vector space [30; 31; 34; 44].

Algorithms. The matrix factorization literature presents
a wide variety of algorithms to solve special cases of our

problem. For example, there are variants on alternating
least squares [10; 49; 45; 8; 9], alternating Newton methods
[15; 41], (stochastic or incremental) gradient descent [23;
26; 32; 38; 2; 50; 37], conjugate gradients [39; 42], expec-
tation minimization (EM) (or “soft-impute”) methods [42;
29; 18], multiplicative updates [25], and convex relaxations
to semidefinite programs [43; 12; 36; 13].

Generally, expectation minimization, which proceeds by it-
eratively imputing missing entries in the matrix and solving
the fully observed problem, has been found to underper-
form relative to other methods [41]. However, when used in
conjunction with computational tricks exploiting a particu-
lar problem structure, such as Gram matrix caching, these
methods can still work extremely well [18].

Semidefinite programming is usually considered computa-
tionally intractable for very large (or even just large) scale
problems [39].

(Stochastic) gradient descent methods are often preferred
for extremely large scale problems since these methods par-
allelize naturally in both shared memory and distributed
memory architectures. See [37; 50] and references therein for
some recent innovative approaches to speeding up stochas-
tic gradient descent for matrix factorization by eliminating
locking and reducing interprocess communication. These
methods can also easily be applied in our setting.

1.2 Contributions

In this paper, we describe a method to automatically fit a
PCA-style low rank model on a data frame. This method
extends previous work in several respects.

e We describe new loss functions for categorical and or-
dinal data that have not previously been considered in
a matrix factorization setting.

e We propose a rule of thumb for scaling these losses in
order to trade off approximation errors on incompara-
ble data types. For example, we show how to compare
the loss due to a misclassification of a categorical value
with an error of 0.1 (say) in predicting a real value.

e We propose a new large-scale, parallel algorithm for
fitting these low rank models on heterogeneous data
sets with real, Boolean, ordinal, and categorical en-
tries, and describe concretely how to choose param-
eters of the algorithm to achieve fast convergence in
practice.

e We describe a new initialization procedure for this al-
gorithm, building off theoretical work in the statistics
literature [24; 6] and generalizing it to operate on a
data frame, that results in substantially better final
solutions compared to random initialization.

Finally, we demonstrate our algorithm by fitting a low rank
model to the 2013 American Community Survey (ACS), a
demographic survey covering 1% of the population of the
United States. This application demonstrates how low rank
models for data frames can be used for representation learn-
ing, to produce “small data” from “big data”: the low rank
model produces short, vector summaries of the categorical
features (states) in the survey that correspond to an intuitive
notion of distance between states in “demography space”.

1.3 Organization

We begin by reviewing a few properties of PCA in §2. We
then introduce the generalized low rank model framework
in §3, and discuss a few loss functions appropriate for each
kind of data. We move on to describe in §4 convenient rules
for introducing offsets and scalings into the model without
performing arithmetic on the data, which preserves data
sparsity and prevents us from subtracting, say, the num-
ber 4 from the state “California”. In §5, we discuss how
to use the model to impute missing data, which enables us
to cross-validate these low rank models, to understand how
well they fit the data and to choose model parameters. We
discuss our algorithm and initialization rule in §6, and con-
clude with an application of the method to fit a model on
the 2013 ACS.

2. PCA

Data matrix. In this section, we let A € R™*" be a
data matrix consisting of m examples each with n numerical
features. Thus A;; € R is the value of the jth feature in
the ith example, the ith row of A is the vector of n feature
values for the ith example, and the jth column of A is the
vector of the jth feature across our set of m examples.

It is common to represent other data types in a numerical
matrix using certain canonical encoding tricks. For exam-
ple, Boolean data is often encoded as 1 for true and 0 (or
-1) for false, ordinal data is often encoded using consecutive
integers to represent the different levels of the variable, and
categorical data is often encoded by creating a column for
each possible value of the categorical variable, and represent-
ing the data using a 1 (true) in the column corresponding to
the observed value, and 0 (false) in all other columns. We
will see more systematic and principled ways to deal with
these data types, and others, in §3. In this section, we as-
sume the entries in the data matrix consist of real numbers.

21 PCA

PCA is one of the oldest and most widely used tools in
data analysis [33; 19]. We review some of its well-known
properties here in order to set notation and as a warm-up to
the variants presented later. PCA seeks a matrix Z € R™*"
of rank k < min(m,n) that best approximates A in the
least-squares sense. The rank constraint can be encoded
implicitly by expressing Z in factored form as Z = XY,
with X € R™**¥ Y € R**™. (The factorization of Z is of
course not unique.) The problem then reduces to choosing
the matrices X and Y to minimize ||A — XY||%, where |- || ¢
is the Frobenius norm of a matrix, i.e., the square root of
the sum of the squares of the entries. We define z; € RX"
to be the ith row of X, and y; € R™ to be the jth column
of Y, and use this notation throughout this paper. Thus
z;y; = (XY)i; € R denotes a dot or inner product.

The PCA problem can be expressed as

minimize ||A — XY|% = Z Z(Aij —ziy;)° (1)

i=1 j=1

with variables X and Y.

2.2 Missing data and matrix completion

Suppose we observe only entries A;; for (i,7) € Q C {1,...,m}x

{1,...,n} from the matrix A, so the other entries are un-
known. Then to find a low rank matrix that fits the data

well, we solve the problem

minimize
(1,5)€Q
with variables X and Y, with v > 0. A solution of this
problem gives an estimate A;; = z;y; for the value of those
entries (4,j) ¢ Q that were not observed. In some applica-
tions, this data imputation (i.e., guessing entries of a matrix
that are not known) is the main point.
There are two very different regimes in which solving the
problem (2) may be useful.
Imputing missing entries to borrow strength. Con-
sider a matrix A in which very few entries are missing. The
typical approach in data analysis is to simply remove any
rows with missing entries from the matrix and exclude them
from subsequent analysis. If instead we solve the prob-
lem above without removing these affected rows, we “bor-
row strength” from the entries that are not missing to im-
prove our global understanding of the data matrix A. In
this regime we are imputing the (few) missing entries of A,
using the examples that ordinarily we would discard.
Low rank matrix completion. Now consider a matrix
A in which most entries are missing, i.e., we only observe
relatively few of the mn elements of A, so that by discarding
every example with a missing feature or every feature with a
missing example, we would discard the entire matrix. Then
the solution to (2) becomes even more interesting: we are
guessing all the entries of a (presumed low rank) matrix,
given just a few of them. It is a surprising recent theoretical
result that this is possible: if the original matrix A has rank
k < n, and least |©2] = O(nklogn) entries are observed,
then the solution to (2) exactly recovers the matrix A with
high probability (subject to a few technical conditions on
the structure of the matrix A) [24].

3. GENERALIZED LOW RANK MODELS

In this section, we introduce the low rank modeling frame-
work we will use to fit a PCA-style model to a data frame.
This framework is a special case of the general framework
described in detail in [46]. We then introduce a few loss
functions appropriate to each kind of data found in a data
frame: real, Boolean, ordinal, and categorical.

Low rank models. Suppose now that our data A is a data
frame consisting of m examples (i.e., rows, samples, obser-
vations) and n features (i.e., columns, attributes, variables),
with entries A;; drawn from a feature set ;. For example,
entries of A can take on real values (F; = R), Boolean val-
ues (F; = {T, F'}), integral values (F; = 1,2,3,...), ordinal
values (F; = {very much, a little, not at all}), or consist of
a tuple of these types (F; = {(a,b) : a € R}). We observe
only entries A;; for (¢,7) € Q C {1,...,m} x{1,...,n} from
the matrix A, so the other entries are unknown.

For each data type, we provide a loss function L; : RxF; —
R which describes the approximation error incurred when
we represent a feature value a € F; by the number v € R.
We now formulate PCA on the data frame A as

minimize
(4,5)€R

with variables X € R"™* and Y € R**™, and with losses
Lj. The regularization parameter v is chosen to prevent

> Ay =)+ Yz +v Y llysllz (2)
i=1 j=1

> Lilways, A) + > llzallz +) sl (3
i=1 =1

overfitting to the observations and to make the model easier
to fit, and can be chosen via cross validation (see §5).

If Lj(u,a) = (u—a)® for every j, v = 0,and Q = {1,...,m}x
{1,...,n} (so we have observed every element in A), then
the problem reduces to PCA (1). However, the loss function
Lj can now depend on the data in a more interesting way.
Problem (3) is not convex, even when the losses L; are all
convex. However, we can exploit the similarity to PCA to
find very good local solutions to Problem 3, using a fast,
parallel algorithm. We find an initial guess for the solution
using the top k elements of the SVD of a matrix closely
related to the data table, which can be computed efficiently
using randomized linear algebra. We then use an alternating
proximal gradient algorithm to refine our initial guess. We
defer a detailed discussion of this algorithm to §6.

3.1 Loss functions for real-valued data

Quadratic loss. The simplest and most commonly used
loss function is the quadratic loss,

L(u,a) = (u—a)’.

However, the quadratic loss is quite sensitive to large outliers
in the data. To fit data sets in which large (non-Gaussian)
errors are expected, a loss function that grows less quickly
with its argument is preferred.

{1 loss. Many authors have proposed a robust version of
PCA obtained by replacing least-squares loss with ¢; loss,

L(u,a) = |u = al,

in order to obtain a robust version of PCA which is less
sensitive to large outliers [5; 47; 48].
Huber loss. The Huber function is defined as

/2 <1
huber(z) = { o] — (1/2) o] > 1.

Using Huber loss,
L(u,a) = huber(u — a),

in place of ¢1 loss also yields an estimator robust to occasion-
aly large outliers [21]. The Huber function is less sensitive to
small errors |u — a| than the £; norm, but becomes linear in
the error for large errors; so it is robust both to large outliers
and to small Gaussian perturbations in the data. In fact,
one can see Huber fitting as finding the most likely explana-
tion of the error as the sum of a Gaussian random variable
n (with negative log likelihood (1/2)n?) and a Laplacian
random variable s (with negative log likelihood |s|):

huber(z) = inf{|s| + (1/2)n” : 2 = n + s}.

3.2 Loss functions for Boolean data

To define loss functions for Boolean data, we will suppose
the data A;; € {—1,1}; that is, we will represent the value
“true” with +1 and “false” with —1. The model is insen-
sitive to our choice of encoding, which merely lightens the
notation.

Hinge loss. We can use a hinge loss to measure the ap-
proximation quality [43; 39]. The hinge loss is defined as

L(u,a) = (1 - au)

(see Figure 1). With this loss, fixing X and minimizing over
y; is equivalent to fitting a support vector machine (SVM)
to predict the labels A;j.

(1—au)+

Figure 1: Hinge loss.
T T

3 a=1

log(1 + exp(au))

Figure 2: Logistic loss.

Logistic PCA. We can also use a logistic loss to measure
the approximation quality [40]. Let

L(u,a) = log(1 + exp(—au))

(see Figure 2). With this loss, fixing X and minimizing over
y; is equivalent to using logistic regression to predict the
labels A;;.

3.3 Loss functions for ordinal data

Suppose the data A;; denote the levels of some ordinal vari-
able, encoded as {1,2,...,d}. (Here, the encoding chosen
does matter; we will see an ordinal loss insensitive to the
encoding below.) We wish to penalize the entries of the
low rank matrix XY which deviate by many levels from the
encoded ordinal value.

Ordinal hinge loss. A convex version of this penalty is
given by the ordinal hinge loss,

a—1 d
Lwa) =S (—uta)i+ 3 (tu—d)s ()
a’=1 a’=a+1

which generalizes the hinge loss to ordinal data (see Figure
3). The slope of the loss function increases whenever the
ordinal value is misclassified by one more level.

This loss function may be useful for encoding Likert-scale
data indicating degrees of agreement with a question [28].

Figure 3: Ordinal hinge loss.

For example, we might have

F; = {strongly disagree, disagree,

neither agree nor disagree, agree, strongly agree}.

We can encode these levels as the integers 1,...,5 and use
the above loss to fit a model to ordinal data. Note that this
approach implies that we view every increment of error as
equally bad: for example, that approximating “agree” by
“strongly disagree” is just as bad as aproximating “neither
agree nor disagree” by “agree”.

3.4 Multi-dimensional loss functions

In this section, we generalize the procedure to allow the loss
functions to depend on blocks of the matrix XY, which al-
lows us to represent ordinal and categorical data types more
naturally. This generalization corresponds to the standard
method for coping with categorical data: namely, expand-
ing a categorical feature with [levels into [Boolean features.
Viewing the loss function as a loss function on categorical
data, rather than a collection of loss functions for Boolean
data, provides a convenient abstraction. For example, it al-
lows us to maintain consistent semantics for imputing miss-
ing data regardless of the data type.

We suppose now that our loss functions are L; : R4 x
F; — R, where d; is the embedding dimension of feature
j, and d = 37, d; is the total dimension of the embedded
features. The loss L;(u, a) describes the approximation error
incurred when we represent a feature value a € F; by the
vector u € R% .

Let 2; € R'* be the ith row of X (as before), and let
Y; € R**% be the jth block matrix of Y so the columns of
Y; correspond to the columns of embedded feature j. We
now formulate a (multi-dimensional) low rank model on the
data frame A,

minimize Z(i,j)eﬂ L;(z:Yj, Aij))
+y 0 sl + oy T, Y51,

with variables X € R"™* and Y € R**¢, and with loss
L;. Note that the first argument of L; is a row vector with
d; entries, and the first argument of r; is a matrix with d;
columns. When d; =1 for every j, then we recover the low
rank model (3) seen in the previous section.

One-vs-all categorical loss. Suppose that a € F is a cat-
egorical variable, taking on one of d values or labels. Identify
the labels with the integers {1,...,d}. Define the one-vs-all
categorical loss function

Lwa)=(1-w)i+

a’€F, a’'#a

()

(1 + ua/)+.

Suppose that every data type j is categorical, and we use
this loss function in (5). Fixing X and optimizing over Y is
equivalent to training one SVM per label to separate that

label from all the others: the jth column of Y gives the
weight vector corresponding the jth SVM. Optimizing over
X identifies the low-dimensional feature vectors for each ex-
ample that allow these SVMs to most accurately predict the
labels.

The difference between categorical PCA and Boolean PCA
is in how missing labels are imputed. To impute a label for
entry (i, j) with feature vector x; according to the procedure
described below in 5, we project the representation Y; onto
the line spanned by z; to form v = z;Y;. Given u, the
imputed label is simply argmax;u;. This model has the
interesting property that if column I’ of Y; lies in the interior
of the convex hull of the columns of Y}, then u; will lie in
the interior of the interval [min; u;, max; ;] [3]. Hence the
model will never impute label I’ for any example.

Many other categorical loss functions can be used in place
of the one-vs-all categorical loss. In fact, any loss function
that can be used to train a classifier for categorical variables
(also called a multi-class classifier) can be used to fit a cat-
egorical PCA model, so long as the loss function depends
only on the inner products between the parameters of the
model and the features corresponding to each example. The
loss function becomes the loss function L used in (5); the
optimal parameters of the model give the optimal matrix Y,
while the implied features will populate the optimal matrix
X. For example, it is possible to use loss functions derived
from error-correcting output codes [11]; the Directed Acyclic
Graph SVM [35]; the Crammer-Singer multi-class loss [7]; or
the multi-category SVM [27].

Multidimensional ordinal loss. We saw in §3.3 one way
loss function for ordinal data. Here, we use a larger embed-
ding dimension for ordinal features. The multi-dimensional
embedding will be particularly useful when the best map-
ping of the ordinal variable onto a linear scale is not uniform;
e.g., if level 1 of the ordinal variable is much more similar to
level 2 than level 2 is to level 3. Using a larger embedding
dimension allows us to infer the relations between the levels
from the data itself. Here we again identify the labels a € F
with the integers {1,...,d}.

One multi-dimensional loss function suitable for embedding
ordinal values

d—1
L(u,a) = Z (1 —Tysartgr)+- (6)

Fixing X and optimizing over Y is equivalent to training an
SVM to separate labels a < [from a > [for each [€ F.
This approach produces a set of hyperplanes (given by the
columns of Y') separating each level [from the next. The
hyperplanes need not be parallel to each other. Fixing Y
and optimizing over X finds the low dimensional features
vector for each example that places the example between the
appropriate hyperplanes. (See Figure 4 for an illustration of
an optimal fit of this loss function, with £ = 2, to a simple
synthetic data set.)

4. OFFSETS AND SCALING

PCA is the maximum likelihood estimator for an observa-
tion model in which elements of a low rank matrix are ob-
served with A/(0,1) noise. If instead each column j of XY
is observed with N (5, 0]2-) noise, the model is no longer un-
biased, and may fit very poorly, particularly if some of the
column means p; are large.

Figure 4: Multi-dimensional ordinal loss

For this reason it is standard practice to standardize the data
before appplying PCA: the column means are subtracted
from each column, and the columns are normalized by their
variances. (This can be done approximately; there is no
need to get the scaling and offset exactly right.) Formally,
define mj; = [{i : (¢,7) € Q}|, and let

1
my = J
(4,5)€Q

1
;= 1 > (A —y)®

mj — =
(1,7)€Q

Hj

q
|

estimate the mean and variance of each column of the data
matrix. PCA is then applied to the matrix whose (i, j) entry
is (Aij — pg)/o;.

In our setting, we prefer to rescale the loss functions and
modify the model, rather than perform arithmetic on the
data itself, in order to compensate for unequal scaling or
offsets. This approach has two advantages. First, when
the data is categorical or ordinal, it obviates the need to
make the data numeric; we need not decide how to take the
average of “California” and “Utah” and subtract it from
“Nevada”. Second, when the data is numeric, it preserves
the sparsity of the underlying data matrix; we need never
subtract the mean (which is, in general, nonzero) from the
entries of the matrix. (For another interesting approach to
preserving sparsity under standardization, see [18].)
Offsets. To allow an offset in the model, we solve

minimize 2 oy co(Aij — @iy; — 1)

et DI | FoH (RS Sy (1771

with variables z;, y;, and u;. Here, u; takes the role of the
column mean, and in fact will be equal to the column mean
in the trivial case k = 0.

An offset may be included in (nearly) the standard form
problem (3) by augmenting the problem slightly. We in-
crease the rank k of the model by 1, and require the last
element of x; to be 1 for every ¢ = 1,...,m. Fitting this
model is equivalent to Problem 7

(7)

Of course, it is also possible to introduce row offsets in the
same way.

Scaling. Given initial loss functions L;, which we assume
are nonnegative, for each feature j let

p; = argmin Y Lj(u, Aij) (8)
B ij)eq
1
oj = r— > Ly, Ay). 9)
j
i:(2,j)EQ

It is easy to see that u; generalizes the mean of column j,
while o7 generalizes the column variance. When L;(u,a) =

(u—a)? forevery i =1,...,m, j=1,...,n, p; is the mean
and af is the sample variance of the jth column of A. When
Li(u,a) = |lu—a| foreveryi =1,...,m, 5 =1,...,n,

is the median of the jth column of A, and crjz is the sum of
the absolute values of the deviations of the entries of the jth
column from the median value.

To fit a standardized GLRM, we rescale the loss functions

and column regularizers by 032- and solve

minimize > 5o Li(Aij, ziy; + i)/ o3
+y 207 I3 + 327 il I3,

where v; = 7/o7. Note that this problem can also be
(nearly) recast in the standard form of Problem (3), with
the one difference that now the regularization parameter for
the column regularization depends on the column index. For
the offset, we may use the same trick described above to en-
code the offset in the regularization; and for the scaling, we
simply replace the original loss function L; by Lj/af-.

(10)

5. IMPUTATION

We can use the solution (X,Y) to a low rank model to im-
pute values corresponding to missing data (¢,7) ¢ Q. This
process is sometimes also called inference. Above, we saw
that the MAP estimator for the missing entry A;; was equal
to x;y;. This is still true for many of the loss functions
above, such as the Huber function or ¢; loss, for which it
makes sense for the data to take on any real value.
However, to approximate abstract data types we must con-
sider a more nuanced view. While we can still think of the
solution (X,Y) to the generalized low rank model (3) in
Boolean PCA as approximating the Boolean matrix A, the
solution is not a Boolean matrix. Instead we say that we
have encoded the original Boolean matrix as a real-valued
low rank matrix XY, or that we have embedded the original
Boolean matrix into the space of real-valued matrices.

To fill in missing entries in the original matrix A, we com-
pute the value A;; that minimizes the loss for z;y;:

A'L’j = argmin LJ (mzyj7 CL)~

This implicitly constrains Aij to lie in the domain Fj of L;.
When L; : R x R — R, as is the case for the losses in §3
above (including #2, ¢1, and Huber loss), then A,-j = ZYj.
But when the data is of an abstract type, the minimum
argmin, L;(u,a) will not in general be equal to u.

For example, when the data is Boolean, L; : {0,1} xR — R,
we compute the Boolean matrix A implied by our low rank
model by solving

Aij = argmin(a(XY);; — 1)+
a€e{0,1}

for MMMF, or
A;; = argminlog(1 + exp(—a(XY);;))
ac{0,1}
for logistic PCA. These problems both have the simple so-
lution
Ay; = sign(wy;).
When Fj is finite, inference partitions the real numbers into
regions

Ra={z € R: Lj(u,z) =min L;(u,a)}

corresponding to different values a € F;. When L; is con-
vex, these regions are intervals.

We can use the estimate A;; even when (i,5) € Q was ob-
served. If the original observations have been corrupted by
noise, we can view Aij as a denoised version of the orig-
inal data. This is an unusual kind of denoising: both the
noisy (A;;) and denoised (A;;) versions of the data lie in the
abstract space Fj.

Using this imputation method allows us to cross-validate
a low rank model in order to choose a value for the rank
k and regularization parameter . Partition 2 into {2 and
Q€ at random, fit a low rank model on the observations in
), impute the values of the entries in Q€ according to the
model, and compare the imputed values with the observed,
held-out data in Q€.

6. ALGORITHM

In this section, we discuss the algorithm we use to solve
Problem 3. Through this section, we use the notation of
Problem 3, with the understanding that offsets and scalings
can be included as discussed in §4 with minimal modifica-
tions to the structure of the algorithm.

Our algorithm is based on the idea of alternating minimiza-
tion: alternately minimizing the objective function over the
factors X and Y. However, it is not very useful to spend a
lot of effort optimizing over X before we have a good esti-
mate for Y. In general, we may consider replacing the mini-
mization over z and y above by any update rule that moves
towards the minimum. Here, we use a single (sub)gradient
step, presented as Algorithm 1, to perform a step towards
the minimum. Empirically, we find that this approach often
finds a better local minimum than performing a full opti-
mization over each factor in every iteration, in addition to
saving computational effort on each iteration.

Algorithm 1
given X0, Y°
fort=1,2,...do
fori=1,...,m do
9 = X pea VLi(@iyi, Ai)y; + 2vz;
ot =2l —alg!
end for
for j=1,...,ndo
95 = it yea VLi(@iys, Aij)ys + 2vy;
y; =" —ajg]

end for
end for

Here, VL(u,a) selects an element arbitrarily from the sub-
gradient of the function L at (u,a), and o} and aj- are step

sizes, which we discuss further below.

The loops over ¢ = 1,...,m and j = 1,...,n are trivially
parallelizable: each row update is independent of all other
rows, and each column update is independent of all other
columns. Hence the updates for different rows and for dif-
ferent columns can be performed simultaneously by different
processors, so long as each processor waits until all row up-
dates have finished before updating a column, and until all
column updates have finished before updating a row. Some
researchers [32; 50] have proposed relaxing this constraint
in order to reduce the time spent waiting for the last, lag-
ging processor to finish all of its updates; this is particularly
important for large problems, or for problems in which it is
difficult to partition the rows and columns onto processors
so that the loads on different processors are balanced.

The last ingredient for a successful algorithm is to specify
a step size rule. The step size rule of = a§ = 1/t for ev-
ery ¢ = 1,...,m, 5 = 1,...,n guarantees convergence to
the globally optimal X if Y is fixed [4], while using a fixed,
but sufficiently small, step size o guarantees convergence to
a small O(a) neighborhood around the optimum [1]. The
technical condition required is that o < 1/L, where L is
the Lipshitz constant of the gradient of the objective func-
tion. In numerical experiments, we find that using a slightly
more nuanced rule allowing different step sizes for different
rows and columns can allow fast progress towards conver-
gence while ensuring that the value of the objective never
increases. The safeguards on step sizes we propose are quite
important in practice: without these checks, we observe di-
vergence when the initial step sizes are chosen too large.
Motivated by the convergence proof in [1], for each row, we
seek a step size on the order of 1/||gi||2, where g; is the
gradient of the objective function with respect to x;. We
start by choosing an initial step size scale a; for each row of
the same order as the average gradient of the loss functions
for that row. In the numerical experiments reported here,
we choose a; = 1 for i = 1,...,m. Since g; grows with the
number of observations n; = [{j : (i,7) € Q}| in row i, we
achieve the desired scaling by setting af = a;/n;. We take
a gradient step on each row x; using the step size ;. Our
procedure for choosing a? is the same, except that we set
the scale a; = 1/0?- to be proportional to the scale of the
loss function for that column.

We then check whether the objective value for the row,

> Ly, Ai) + a3,
J:(i,5) €2

has increased or decreased. If it has increased, then we
trust our first order approximation to the objective function
less far, and reduce the step size; if it has decreased, we
gain confidence, and increase the step size. In the numerical
experiments reported below, we decrease the step size by
30% when the objective increases, and increase the step size
by 5% when the objective decreases. This check stabilizes
the algorithm and prevents divergence even when the initial
scale has been chosen poorly.

We then do the same with respect to each column y;: we
take a gradient step, check if the objective value for the
column has increased or decreased, and adjust the step size.
The time per iteration is thus O(k(m+n+|Q|)): computing
the gradient of the ith loss function with respect to z; takes
time O(kn;); computing the prox operator of the square

loss takes time O(k); summing these over all the rows ¢ =
1,...,m gives time O(k(m+|Q])); and adding the same costs
for the column updates gives time O(k(m + n + [2])). The
checks on the objective value take time O(k) per observation
(to compute the inner product z;y; and value of the loss
function for each observation) and time O(1) per row and
column to compute the value of the regularizer. Hence the
total time per iteration is O(k(m + n + [©])).

By partitioning the job of updating different rows and dif-
ferent columns onto different processors, we can achieve an
iteration time of O(k(m + n + |€2|)/p) using p processors.

6.1 Initalization

Alternating minimization need not converge to the same so-
lution (or the same objective value) when initialized at dif-
ferent starting points. In practice, we observe that alter-
nating minimization can converge to models with optimal
values that differ significantly. It is critical to choose a good
initialization for the algorithm in order to converge to a
model which fits well.

If one desires a low rank model for the data, initializing with
the SVD of the data (even if the data is incomplete, and the
loss function is not quadratic) can sometimes help alternat-
ing minimization find a good local optimum. In separate
lines of research, [24] and [22] show that alternating mini-
mization converges to the global optimum when initialized
with the SVD of the data matrix (or of a slightly modified,
or trimmed, matrix), so long as the number of entries in the
matrix is sufficiently large, and the entries have been chosen
uniformly at random. Indeed, the method even converges
quickly: [22] show that this approach achieves a quadratic
convergence rate.

But we will need a matrix on which to perform the SVD.
What matrix corresponds to our dataframe? Here, we give
a simple proposal for how to construct such a matrix, mo-
tivated by [24; 22; 6]. Our key insight is that the SVD is
the solution to our problem when the entries in the table
have mean zero and variance one (and all the loss functions
are quadratic). Our initialization will construct a matrix
from our data frame with mean zero and variance one, take
its SVD, and invert the construction to produce the correct
initialization.

Our first step is to expand the categorical columns taking
on d values into d Boolean columns, and to reinterpret or-
dinal and Boolean columns as numbers. The scaling we
propose below is insensitive to the values of the numbers
in the expansion of the Booleans; for example, using (false,
true)= (0,1) or (false, true)= (—1,1) produces the same
initialization. The scaling is sensitive to the differences be-
tween ordinal values; while encoding (never, sometimes, al-
ways) as (1,2,3) or as (—5,0,5) will make no difference,
encoding these ordinals as (0, 1,10) will result in a different
initialization.

We here make use of the assumption, implicit throughout
this paper, that the rows of the data frame are independent
and identically distributed, so we assume they each have
equal means and variances. Our mission is to standardize
the columns. The observed entries in column j have mean

15 and variance O'JQ-,

py = argmin Y L;(u, Ay)
B i) e
1
o; = > Lilp, Ay),

n; —1 i:(i,5)€Q

so the observed entries in (A; — p;)/0; have mean 0 and
variance 1.

Now we address the missing entries. Each missing entry
can be safely replaced with O in the scaled version of the
data without changing the column mean. But the column
variance will decrease to mj/m. If instead we define

Ay =4 @ (Aij —pg) (2,5) €q
0 otherwise,

then the column will have mean 0 and variance 1.

Now we take the SVD USV7T of A, and let U € R™**,
¥ e RF** and V € R™** denote these matrices truncated
to the top k singular vectors and values. We initialize X =
USY2 and Y = £Y2V7T diag(c). The offset row in the
model is initialized with the means, i.e., the kth column of
X is filled with 1’s, and the kth row of Y is filled with the
means, so Yi; = p;.

Note that the scaling we choose here minimizes the scaled
regularization penalty v 37" | ||z:]|5 + D Vi lly;l|13 (where
~; is defined as in §4) over all matrices X and Y with the
same product USVT diag (o).

Finally, we mention that we need not compute the full SVD
of A, but instead can simply compute the top k singular
triples. Using, for example, the randomized top £ SVD al-
gorithm proposed in [17], we are able to compute the top
k singular triples of A in time linear in |Q|, m, and n (and
quadratic in k).

Figure 5 compares the convergence of this algorithm on a
low rank model for census data described in detail below
in §7. We initialize the algorithm at six different points:
from five different random normal initializations (entries of
X% and Y° drawn iid from A(0,1)), and from the SVD of
A. The SVD initialization produces a better initial value
for the objective function, and also allows the algorithm to
converge to a substantially lower final objective value than
can be found from any of the five random starting points.
This behaviour indicates that the “good” local minimum
discovered by the SVD initialization is located in a basin
of attraction that has low probability with respect to the
measure induced by random normal initialization.

7. PCA ON THE CENSUS

We fit a low rank model to the 2013 American Community
Survey (ACS) to illustrate the method. The ACS is a survey
administered to 1% of the population of the United States
each year to gather their responses to a variety of demo-
graphic and economic questions. Our data sample consists
of m = 3132796 responses gathered from residents of the US,
excluding Puerto Rico, in the year 2013, on the 23 questions
listed in Table 1.

We fit a rank 10 model to this data using the huber loss for
real valued data, the hinge loss for Boolean data, the ordinal
hinge loss for ordinal data, the one-vs-all categorical loss for
categorical data, and regularization parameter v = .1. We

5.0x10°

4.0x10°

3.0x10°

initialization

m random1
random2
random3
random4
random5
SVD

objective

2.0x10°

1.0x10°

iteration

Figure 5: Convergence from random and SVD initializations

Variable Description Type
HHTYPE household type categorical
STATEICP state categorical
OWNERSHP | own home Boolean
COMMUSE commercial use Boolean
ACREHOUS house on > 10 acres Boolean
HHINCOME | household income real
COSTELEC monthly electricity bill real
COSTWATR | monthly water bill real
COSTGAS monthly gas bill real
FOODSTMP | on food stamps Boolean
HCOVANY have health insurance Boolean
SCHOOL currently in school Boolean

EDUC highest level of education ordinal

GRADEATT | highest grade level attained | ordinal
EMPSTAT employment status categorical
LABFORCE in labor force Boolean
CLASSWKR | class of worker Boolean

WKSWORK?2 | weeks worked per year ordinal
UHRSWORK | usual hours worked per week | real
LOOKING looking for work Boolean
MIGRATE1 migration status categorical

Table 1: ACS variables

Feature Most similar features
Alaska Montana, North Dakota
California Illinois, cost of water
Colorado Oregon, Idaho

Ohio Indiana, Michigan
Pennsylvania | Massachusetts, New Jersey
Virginia Maryland, Connecticut
Hours worked | weeks worked, education

Table 2: Most similar features in demography space

allow an offset in the model and scale the loss functions and
regularization as described in §4.

In Table 2, we select a few features j from the model, along
with their associated vectors y;, and find the two features
most similar to them by finding the two features j' which
minimize cos(y;,y;). The model automatically groups states
which intuitively share demographic features: for example,

three wealthy states adjoining (but excluding) a major metropoli-

tan area — Virginia, Maryland, and Connecticut — are
grouped together. The low rank structure also identifies
the results (high water prices) of the prolonged drought af-
flicting California, and corroborates the intuition that work
leads only to more work: hours worked per week, weeks
worked per year, and education level are highly correlated.

Acknowledgements

This work was developed with support from the National
Science Foundation Graduate Research Fellowship program
(under Grant No. DGE-1147470), the Gabilan Stanford
Graduate Fellowship, the Gerald J. Lieberman Fellowship,
and the DARPA X-DATA program.

8. REFERENCES

[1] D. P. Bertsekas. Incremental gradient, subgradient, and
proximal methods for convex optimization: A survey.
Optimization for Machine Learning, 2010:1-38, 2011.

[2] V. Bittorf, B. Recht, C. Ré, and J. A. Tropp. Factoring
nonnegative matrices with linear programs. Advances in
Neural Information Processing Systems, 25:1223-1231,
2012.

[3] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[4] S. Boyd, L. Xiao, and A. Mutapcic. Subgradient meth-
ods. Lecture notes for EE364b, Stanford University,
2003.

[5] E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust
principal component analysis? Journal of the ACM
(JACM), 58(3):11, 2011.

[6] S. Chatterjee. Matrix estimation by universal singular
value thresholding. The Annals of Statistics, 43(1):177—
214, 2014.

[7] K. Crammer and Y. Singer. On the algorithmic imple-
mentation of multiclass kernel-based vector machines.
The Journal of Machine Learning Research, 2:265—-292,
2002.

[8] J. De Leeuw. The Gifi system of nonlinear multivari-
ate analysis. Data analysis and informatics, 3:415-424,
1984.

[9] J. De Leeuw and P. Mair. Gifi methods for optimal
scaling in R: The package homals. Journal of Statistical
Software, pages 1-30, 2009.

[10] J. De Leeuw, F. Young, and Y. Takane. Additive struc-
ture in qualitative data: An alternating least squares
method with optimal scaling features. Psychometrika,
41(4):471-503, 1976.

[11] T. G. Dietterich and G. Bakiri. Solving multiclass learn-
ing problems via error-correcting output codes. CoRR,
cs.A1/9501101, 1995.

[12] M. Fazel, H. Hindi, and S. Boyd. Rank minimization
and applications in system theory. In Proceedings of the
2004 American Control Conference (ACC), volume 4,
pages 3273-3278. IEEE, 2004.

[13] W. Fithian and R. Mazumder. Scalable convex methods
for flexible low-rank matrix modeling. arXiv preprint
arXiv:1308.4211, 2013.

[14] A. Goldberg, B. Recht, J. Xu, R. Nowak, and X. Zhu.
Transduction with matrix completion: Three birds with
one stone. In Advances in neural information processing
systems, pages 757-765, 2010.

[15] G. J. Gordon. Generalized® linear” models. In Advances
in Neural Information Processing Systems, pages 577—
584, 2002.

[16] A. Gress and 1. Davidson. A flexible framework for pro-
jecting heterogeneous data. In Proceedings of the 23rd
ACM International Conference on Conference on Infor-
mation and Knowledge Management, CIKM 14, pages
1169-1178, New York, NY, USA, 2014. ACM.

[17] N. Halko, P.-G. Martinsson, and J. Tropp. Finding
structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions.
SIAM Review, 53(2):217-288, 2011.

[18] T. Hastie, R. Mazumder, J. Lee, and R. Zadeh. Matrix
completion and low-rank svd via fast alternating least
squares. arXiv, 2014.

[19] H. Hotelling. Analysis of a complex of statistical vari-
ables into principal components. Journal of Educational
Psychology, 24(6):417, 1933.

[20] H. Hotelling. Relations between two sets of variates.
Biometrika, 28(3-4):321-377, 1936.

[21] P. Huber. Robust statistics. Wiley, New York, 1981.

[22] P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank ma-
trix completion using alternating minimization. In Pro-
ceedings of the 45th annual ACM Symposium on the
Theory of Computing, pages 665—-674. ACM, 2013.

[23] R. Keshavan and S. Oh. A gradient descent algorithm
on the Grassman manifold for matrix completion. arXiv
preprint arXiv:0910.5260, 2009.

[24]

[25]

[26]

[27]

32]

[33]

[34]

[35]

[36]

[37]

R. H. Keshavan, A. Montanari, and S. Oh. Matrix com-
pletion from a few entries. IEEE Transactions on In-
formation Theory, 56(6):2980-2998, 2010.

D. D. Lee and H. S. Seung. Learning the parts of
objects by non-negative matrix factorization. Nature,
401(6755):788-791, 1999.

J. D. Lee, B. Recht, R. Salakhutdinov, N. Srebro, and
J. A. Tropp. Practical large-scale optimization for max-
norm regularization. In Advances in Neural Information
Processing Systems, pages 1297-1305, 2010.

Y. Lee, Y. Lin, and G. Wahba. Multicategory sup-
port vector machines: Theory and application to the
classification of microarray data and satellite radiance

data. Journal of the American Statistical Association,
99(465):67-81, 2004.

R. Likert. A technique for the measurement of atti-
tudes. Archives of Psychology, 1932.

R. Mazumder, T. Hastie, and R. Tibshirani. Spectral
regularization algorithms for learning large incomplete
matrices. The Journal of Machine Learning Research,
11:2287-2322, 2010.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Effi-
cient estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in Neu-
ral Information Processing Systems, pages 3111-3119,
2013.

F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild!: A
lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Processing
Systems, 2011.

K. Pearson. On lines and planes of closest fit to sys-
tems of points in space. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science,
2(11):559-572, 1901.

J. Pennington, R. Socher, and C. Manning. Glove:
Global vectors for word representation. Proceedings of
the Empiricial Methods in Natural Language Processing
(EMNLP 2014), 12, 2014.

J. C. Platt, N. Cristianini, and J. Shawe-Taylor. Large
margin DAGs for multiclass classification. In Advances
in Neural Information Processing Systems, pages 547—
553, 1999.

B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed
minimum-rank solutions of linear matrix equations via
nuclear norm minimization. SIAM Review, 52(3):471—
501, Aug. 2010.

B. Recht and C. Ré. Parallel stochastic gradient algo-
rithms for large-scale matrix completion. Mathematical
Programming Computation, 5(2):201-226, 2013.

(38]

(40]

[41]

(42]

(43]

(44]

B. Recht, C. Ré, S. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Processing
Systems, pages 693-701, 2011.

J. D. M. Rennie and N. Srebro. Fast maximum mar-
gin matrix factorization for collaborative prediction. In
Proceedings of the 22nd International Conference on
Machine Learning, pages 713-719. ACM, 2005.

A. 1. Schein, L. K. Saul, and L. H. Ungar. A generalized
linear model for principal component analysis of binary
data. In Proceedings of the Ninth International Work-
shop on Artificial Intelligence and Statistics, volume 38,
page 46, 2003.

A. P. Singh and G. J. Gordon. A unified view of matrix
factorization models. In Machine Learning and Knowl-
edge Discovery in Databases, pages 358-373. Springer,
2008.

N. Srebro and T. Jaakkola. Weighted low-rank approx-
imations. In ICML, volume 3, pages 720-727, 2003.

N. Srebro, J. D. M. Rennie, and T. Jaakkola.
Maximum-margin matrix factorization. In Advances in
Neural Information Processing Systems, volume 17,
pages 1329-1336, 2004.

V. Srikumar and C. Manning. Learning distributed
representations for structured output prediction. In
Advances in Neural Information Processing Systems,
pages 3266-3274, 2014.

Y. Takane, F. Young, and J. De Leeuw. Nonmetric in-
dividual differences multidimensional scaling: an alter-
nating least squares method with optimal scaling fea-
tures. Psychometrika, 42(1):7-67, 1977.

M. Udell, C. Horn, R. Zadeh, and S. Boyd. Generalized
low rank models. arXiv preprint arXiw:1410.0342, 2014.

J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma.
Robust principal component analysis: Exact recovery
of corrupted low-rank matrices by convex optimization.
In Advances in Neural Information Processing Systems,
volume 3, 2009.

H. Xu, C. Caramanis, and S. Sanghavi. Robust PCA
via outlier pursuit. IEEE Transactions on Information
Theory, 58(5):3047-3064, 2012.

F. Young, J. De Leeuw, and Y. Takane. Regression
with qualitative and quantitative variables: An alter-
nating least squares method with optimal scaling fea-
tures. Psychometrika, 41(4):505-529, 1976.

H. Yun, H.-F. Yu, C.-J. Hsieh, S. V. N. Vish-
wanathan, and I. Dhillon. NOMAD: Non-locking,
stOchastic Multi-machine algorithm for Asynchronous

and Decentralized matrix completion. arXiv preprint
arXw:1312.0193, 2013.

