## MAE 2250

Air Motor


http://www.animatedengines.com/co2.html





Ingersoll-Rand 2317G Edge Pro Wrench


Proto 3/4" Drive Air Impact Wrench








## $\leftrightarrow$ <br> Eile Edit View Fagvorites Iools Help <br> $x$ Convert - Select

## N1ODDL



2 Cos

$\square$ Search KMODDL

Reuleaux Collection. Cornell
$\qquad$ B. Higher Element Pairs
$\pm$C. Simple Kinematic Chains
$\pm$ $\qquad$ D. Crank Mechanisms
$\pm$ $\qquad$ E. Excentric Slider Cranks
$\qquad$ . Crank Chamber Mechanisms
F01 Simpson and Shipton Chamber Crank Mechanism
F02 Cochrane Chamber Crank Mechanism
F03 Beale Chamber Crank Mechanism
F04 Ramelli Chamber Crank Mechanism
F05 Wedding Chamber Crank Mechanism F06 Davies Spherical Engine
G. Simple Gear Trains
H. Model Support Pedestals
I. Chamber Wheel Mechanisms
$\qquad$ K. Complex Slider Crank Mechanisms L. Positive Return Constant Breadth Cams
$+$
$\qquad$ M. Screw Mechanisms
$\qquad$ N. Ratchet Mechanisms O. Planetary Gear Trains
$+$ $\qquad$
P. Jointed Couplings
$\qquad$ Q. Gear Teeth Profiles R. Cycloid Rolling Models
 $\qquad$ S. Straight-line Mechanisms T. Parallel Guide Mechanisms
$\qquad$ U. Rotating Arm Guide Mechanisms
$\pm$ $\qquad$ V. Belt Drive Mechanisms
$\pm$ W. Friction Wheels
$\pm$
X. Clock Escapements

F01

F02

F03

F04

F05

F06




ANALYSIS


1. Cylinder Head- The top, or cap, of the cylinder
2. Top-Dead-Center (TDC)- This is the highest point of travel of the top of the piston.
3. Bottom-Dead-Center (BDC)- This is the lowest point of travel of the top of the piston.
4. Stroke (S)- 1 The movement of the piston from one extreme to the other. 2The distance between TDC and BDC: $S=$ TDC BDC
5. Power Stroke- Stroke in which high pressure acts on the piston producing work.
6. Exhaust Stroke- Stroke in which used gasses are ejected from the cylinder.
7. Intake Stroke- (4 stroke IC engine) Stroke in which fresh fuel/air mixture is drawn into the
8. Compression Stroke- (4 stroke IC engine) Stroke in which fuel/air mixture is compressed to high temperature and pressure. This stroke requires work.
9. Bore (D)- The diameter of one cylinder
10. Clearance Volume (Vc)- This is the volume of air between the top of the cylinder and the piston at TDC.
11. Displacement (V)- The volume of air displaced by the piston. It is defined as the area of the bore times the stroke times the number of cylinders: $V=n \cdot 0.25 \pi D 2 S$
12. Intake valve- This valve allows the high pressure air (or the fuel/air mixture) into the cylinder.
13. Exhaust valve- This valve allows used air (or combustion products) out of the cylinder.
14. Crankshaft- This is a rotating rod with an eccentric arm. This enables the linear motion of the piston to be changed to rotary motion.
15. Connecting Rod- A linkage connecting the piston to the crankshaft with pin joints on each end
16. Fly Wheel- A rotating disk with a high moment of inertia placed on the crankshaft. This makes the rotation smoother due to its high inertia, and also does the work of ejecting exhaust gases in a four toke IC engine.
17. Timing- This refers to the coordination between the movement of the piston and the opening/ closing of the valves.
18. Speed (rpm)- The rotational speed of the crankshaft in revolutions per minute.
19. Angular Velocity (w)- The rotational speed of the crankshaft in radians per second. $w=2 \pi(r p m) / 60$

20. $\quad$ Power = energy / time
21. Energy (work) = Force $x$ distance:
22. $w=f d x=p d v$
23. $(f=p A ; d x=d v / A)$
24. When they are changing, $w=\int p d v$

## Draw PV diagram

- For a cycle comprising the following four steps 1. CH at TDC, exhaust closed, intake open to $\mathrm{P}_{\mathrm{in}}$,

2. CH moves to BDC while intake remains open
3. Intake closes, exhaust opens to $\mathrm{P}_{\mathrm{atm}}$
4. CH moves back to TDC while exhaust open


## Draw PV diagram



- For a cycle comprising the following four steps

1. CH at TDC, exhaust closed, intake open to $\mathrm{P}_{\mathrm{in}}$,
2. CH moves to BDC while intake remains open
3. Intake closes, exhaust opens to $\mathrm{P}_{\mathrm{atm}}$
4. CH moves back to TDC while exhaust open

## Draw PV diagram



- For a cycle comprising the following four steps

1. CH at TDC, exhaust closed, intake open to $\mathrm{P}_{\mathrm{in}}$,
2. CH moves to BDC while intake closes
3. Intake closes, exhaust opens to $\mathrm{P}_{\text {atm }}$
4. CH moves back to TDC while exhaust open

## Draw PV diagram



- For a cycle comprising the following four steps

1. CH at TDC, exhaust closed, intake open to $\mathrm{P}_{\mathrm{in}}$,
2. CH moves to BDC while intake closes
3. Intake closes, exhaust opens to $\mathrm{P}_{\text {atm }}$
4. CH moves back to TDC while exhaust open, but closes before TDC

## Draw PV diagram



- For a cycle comprising the following four steps

1. CH at TDC, exhaust closed, intake open to $\mathrm{P}_{\text {in }}$ while CH accelerates
2. CH moves to BDC while intake remains open closes
3. Intake closes, exhaust opens to $\mathrm{P}_{\mathrm{atm}}$
4. CH moves back to TDC while exhaust open, but closes before TDC

High pressure can't keep up with increasing volume:



a. Leg $4 \rightarrow 1$ is constant volume, so $\mathrm{w}_{41}=0$
b. Leg $1 \rightarrow 2$ is constant pressure, so $w_{12}=\left(p_{1}-p_{a t m}\right) *\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)$
c. Leg $2 \rightarrow 3$ is adiabatic (isentropic, const entropy) expansion
i. During isentropic expansion, $\mathrm{p}^{\mathrm{k}}=$ const $\left(k=\mathrm{c}_{\mathrm{p}} / \mathrm{c}_{\mathrm{v}}=1.4\right.$ for ideal air $)$
ii. $\quad w 23=\int_{2}^{3}\left(p-p_{\text {atm }}\right) d v=\int_{2}^{3} p d v-p_{\text {atm }}\left(v_{3}-v_{2}\right)$
iii. $\int_{2}^{3} p d v=\int_{2}^{3} p v^{k} \frac{d v}{v^{k}}=p v^{k} \int_{2}^{3} p \frac{d v}{v^{k}}=\frac{p v^{k}}{(1-k)}\left(v_{3}^{1-k}-v_{2}^{1-k}\right)=\frac{p_{2} v_{2}-p_{3} v_{3}}{1-k}$

1. because $\mathrm{pv}^{\mathrm{k}}=$ const it can be taken out of the integral
iv. $\quad w_{23}=\frac{p_{2} v_{2}-p_{3} v_{3}}{1-k}-p_{\text {atm }}\left(v_{3}-v_{2}\right)$
v. Note: $\mathrm{p} 3 \mathrm{v} 3 / \mathrm{p} 1 \mathrm{v} 1=\mathrm{T} 3 / \mathrm{T} 1$; cooling will occur! Avoid frost
d. Leg $3 \rightarrow 4$ is constant pressure, $\mathrm{sp} \mathrm{w}_{34}=\left(\mathrm{p}_{3}-\mathrm{p}_{\mathrm{atm}}\right) *\left(\mathrm{v}_{1}-\mathrm{v}_{3}\right)$


Figure 10-2 Typical $p-v$ diagram for an actual spark-ignition engine.

## Improving performance

- List design aspects that will improve performance
- Perfectly synchronized valve timing
- Crisp valve switching
- Low friction in piston, joints
- High flow, low resistance and pressure drops
- High pressure supply: reservoir
- Minimum leaks around piston, valves
- Deliberate power/efficiency tradeoff


## Requirements

- Weekly project report
- uploaded to CMS by end of every week.
- Preliminary design review
- (10 min presentation): 1st week of your project
- Critical design review
- (10 min presentation): 2nd week of your project
- Prototype demonstration
- (5 min presentation): 4th week of your project
- Final presentation
- (15 min): 5th week of your project
- Final report:
- Upload to CMS on the 5th week of your project
- Team assessment


## Mechanisms



Cam
To go from rotation to linear motion only


## Rotary <-> Linear

Slider-crank



Scotch yoke


Pivoting cylinder


Cam-follower


Fig. 2-9 Slider-crank mechanism.


Fig. 2-19 The first inversion of the slidercrank mechanism.


Fig. 2-20 The second inversion of the slider-crank mechanism.


Fig. 2-15 Scotch-yoke mechanism.


FUNDAMENTALS OF MECHANICAL DESIGN

Third Edition

## RICHARD M. PHELAN

Professor of Mechanical Engineering, Cornell University
McGRAW-HILL BOOK COMPANY

Fig. 2-12 Eccentric-and-rod mechanism.


## Single/Double acting




## Types of piston engines

Single-cylinder, single-acting


Single-cylinder, dual-acting


Double-cylinder, single-acting


## Types of piston engines

Multiple cylinders






## Valve designs


-s Rotary valve


For double-ading cylinder,


## Controlling friction

- Material choices (metal to metal is good; Teflon)
- Lubrication, oils
- Ball bearings (use stock bearings)
- Surface finish, tolerances
- Design: Minimize force normal to surface
- (e.g upright piston vs. side piston)
- Transmission



## Line losses

$$
\frac{\Delta p}{L}=\frac{f}{D} \frac{1}{2} \rho u^{2}
$$



$$
\dot{Q}=u A \quad A=-\frac{D^{2}}{4}
$$

$$
\frac{\Delta p}{L} \approx \frac{8}{\pi^{2}} f \rho \frac{\dot{\mathrm{Q}}^{2}}{\mathrm{D}^{5}}
$$

## Lewis Moody (1944) diagram


http://www.mathworks.com/matlabcentral/files/7747/moody.png



Testing of Air Motor Power:
flywheel mounted on output shaft force measurement by spring scales

Test setup:


Power $=($ Torque $)($ angular velocity $)$
angular velocity obtained using a strobe (rpm)
torque $=$ force $*$ moment arm of flywheel force $=$ force across spring scales


## Logistics

- Presentations in section
- Machining + standard parts only (no 3DP, Laser)
- TA consolidates McMaster orders
- Wordpress website at blog.cornell.edu

